This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer greater than or equal to 2 divides a prime number iff it is equal to it. (Contributed by Paul Chapman, 26-Oct-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsprm | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ) → ( 𝑁 ∥ 𝑃 ↔ 𝑁 = 𝑃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | ⊢ ( 𝑧 = 𝑁 → ( 𝑧 ∥ 𝑃 ↔ 𝑁 ∥ 𝑃 ) ) | |
| 2 | eqeq1 | ⊢ ( 𝑧 = 𝑁 → ( 𝑧 = 𝑃 ↔ 𝑁 = 𝑃 ) ) | |
| 3 | 1 2 | imbi12d | ⊢ ( 𝑧 = 𝑁 → ( ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) ↔ ( 𝑁 ∥ 𝑃 → 𝑁 = 𝑃 ) ) ) |
| 4 | 3 | rspcv | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ∀ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) → ( 𝑁 ∥ 𝑃 → 𝑁 = 𝑃 ) ) ) |
| 5 | isprm4 | ⊢ ( 𝑃 ∈ ℙ ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) ) ) | |
| 6 | 5 | simprbi | ⊢ ( 𝑃 ∈ ℙ → ∀ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) ) |
| 7 | 4 6 | impel | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ) → ( 𝑁 ∥ 𝑃 → 𝑁 = 𝑃 ) ) |
| 8 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ℤ ) | |
| 9 | iddvds | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∥ 𝑁 ) | |
| 10 | breq2 | ⊢ ( 𝑁 = 𝑃 → ( 𝑁 ∥ 𝑁 ↔ 𝑁 ∥ 𝑃 ) ) | |
| 11 | 9 10 | syl5ibcom | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 = 𝑃 → 𝑁 ∥ 𝑃 ) ) |
| 12 | 8 11 | syl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 = 𝑃 → 𝑁 ∥ 𝑃 ) ) |
| 13 | 12 | adantr | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ) → ( 𝑁 = 𝑃 → 𝑁 ∥ 𝑃 ) ) |
| 14 | 7 13 | impbid | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ) → ( 𝑁 ∥ 𝑃 ↔ 𝑁 = 𝑃 ) ) |