This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 4sq . (Contributed by Mario Carneiro, 16-Jul-2014) (Revised by AV, 14-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 4sq.1 | ⊢ 𝑆 = { 𝑛 ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ 𝑛 = ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) } | |
| 4sq.2 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | ||
| 4sq.3 | ⊢ ( 𝜑 → 𝑃 = ( ( 2 · 𝑁 ) + 1 ) ) | ||
| 4sq.4 | ⊢ ( 𝜑 → 𝑃 ∈ ℙ ) | ||
| 4sq.5 | ⊢ ( 𝜑 → ( 0 ... ( 2 · 𝑁 ) ) ⊆ 𝑆 ) | ||
| 4sq.6 | ⊢ 𝑇 = { 𝑖 ∈ ℕ ∣ ( 𝑖 · 𝑃 ) ∈ 𝑆 } | ||
| 4sq.7 | ⊢ 𝑀 = inf ( 𝑇 , ℝ , < ) | ||
| Assertion | 4sqlem13 | ⊢ ( 𝜑 → ( 𝑇 ≠ ∅ ∧ 𝑀 < 𝑃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4sq.1 | ⊢ 𝑆 = { 𝑛 ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ 𝑛 = ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) } | |
| 2 | 4sq.2 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | |
| 3 | 4sq.3 | ⊢ ( 𝜑 → 𝑃 = ( ( 2 · 𝑁 ) + 1 ) ) | |
| 4 | 4sq.4 | ⊢ ( 𝜑 → 𝑃 ∈ ℙ ) | |
| 5 | 4sq.5 | ⊢ ( 𝜑 → ( 0 ... ( 2 · 𝑁 ) ) ⊆ 𝑆 ) | |
| 6 | 4sq.6 | ⊢ 𝑇 = { 𝑖 ∈ ℕ ∣ ( 𝑖 · 𝑃 ) ∈ 𝑆 } | |
| 7 | 4sq.7 | ⊢ 𝑀 = inf ( 𝑇 , ℝ , < ) | |
| 8 | eqid | ⊢ { 𝑢 ∣ ∃ 𝑚 ∈ ( 0 ... 𝑁 ) 𝑢 = ( ( 𝑚 ↑ 2 ) mod 𝑃 ) } = { 𝑢 ∣ ∃ 𝑚 ∈ ( 0 ... 𝑁 ) 𝑢 = ( ( 𝑚 ↑ 2 ) mod 𝑃 ) } | |
| 9 | eqid | ⊢ ( 𝑣 ∈ { 𝑢 ∣ ∃ 𝑚 ∈ ( 0 ... 𝑁 ) 𝑢 = ( ( 𝑚 ↑ 2 ) mod 𝑃 ) } ↦ ( ( 𝑃 − 1 ) − 𝑣 ) ) = ( 𝑣 ∈ { 𝑢 ∣ ∃ 𝑚 ∈ ( 0 ... 𝑁 ) 𝑢 = ( ( 𝑚 ↑ 2 ) mod 𝑃 ) } ↦ ( ( 𝑃 − 1 ) − 𝑣 ) ) | |
| 10 | 1 2 3 4 8 9 | 4sqlem12 | ⊢ ( 𝜑 → ∃ 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∃ 𝑢 ∈ ℤ[i] ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) |
| 11 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) ∧ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) → 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ) | |
| 12 | elfznn | ⊢ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) → 𝑘 ∈ ℕ ) | |
| 13 | 11 12 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) ∧ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) → 𝑘 ∈ ℕ ) |
| 14 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) ∧ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) → ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) | |
| 15 | abs1 | ⊢ ( abs ‘ 1 ) = 1 | |
| 16 | 15 | oveq1i | ⊢ ( ( abs ‘ 1 ) ↑ 2 ) = ( 1 ↑ 2 ) |
| 17 | sq1 | ⊢ ( 1 ↑ 2 ) = 1 | |
| 18 | 16 17 | eqtri | ⊢ ( ( abs ‘ 1 ) ↑ 2 ) = 1 |
| 19 | 18 | oveq2i | ⊢ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + ( ( abs ‘ 1 ) ↑ 2 ) ) = ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) |
| 20 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) ∧ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) → 𝑢 ∈ ℤ[i] ) | |
| 21 | 1z | ⊢ 1 ∈ ℤ | |
| 22 | zgz | ⊢ ( 1 ∈ ℤ → 1 ∈ ℤ[i] ) | |
| 23 | 21 22 | ax-mp | ⊢ 1 ∈ ℤ[i] |
| 24 | 1 | 4sqlem4a | ⊢ ( ( 𝑢 ∈ ℤ[i] ∧ 1 ∈ ℤ[i] ) → ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + ( ( abs ‘ 1 ) ↑ 2 ) ) ∈ 𝑆 ) |
| 25 | 20 23 24 | sylancl | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) ∧ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) → ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + ( ( abs ‘ 1 ) ↑ 2 ) ) ∈ 𝑆 ) |
| 26 | 19 25 | eqeltrrid | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) ∧ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) → ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) ∈ 𝑆 ) |
| 27 | 14 26 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) ∧ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) → ( 𝑘 · 𝑃 ) ∈ 𝑆 ) |
| 28 | oveq1 | ⊢ ( 𝑖 = 𝑘 → ( 𝑖 · 𝑃 ) = ( 𝑘 · 𝑃 ) ) | |
| 29 | 28 | eleq1d | ⊢ ( 𝑖 = 𝑘 → ( ( 𝑖 · 𝑃 ) ∈ 𝑆 ↔ ( 𝑘 · 𝑃 ) ∈ 𝑆 ) ) |
| 30 | 29 6 | elrab2 | ⊢ ( 𝑘 ∈ 𝑇 ↔ ( 𝑘 ∈ ℕ ∧ ( 𝑘 · 𝑃 ) ∈ 𝑆 ) ) |
| 31 | 13 27 30 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) ∧ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) → 𝑘 ∈ 𝑇 ) |
| 32 | 31 | ne0d | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) ∧ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) → 𝑇 ≠ ∅ ) |
| 33 | 6 | ssrab3 | ⊢ 𝑇 ⊆ ℕ |
| 34 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 35 | 33 34 | sseqtri | ⊢ 𝑇 ⊆ ( ℤ≥ ‘ 1 ) |
| 36 | infssuzcl | ⊢ ( ( 𝑇 ⊆ ( ℤ≥ ‘ 1 ) ∧ 𝑇 ≠ ∅ ) → inf ( 𝑇 , ℝ , < ) ∈ 𝑇 ) | |
| 37 | 35 32 36 | sylancr | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) ∧ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) → inf ( 𝑇 , ℝ , < ) ∈ 𝑇 ) |
| 38 | 7 37 | eqeltrid | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) ∧ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) → 𝑀 ∈ 𝑇 ) |
| 39 | 33 38 | sselid | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) ∧ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) → 𝑀 ∈ ℕ ) |
| 40 | 39 | nnred | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) ∧ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) → 𝑀 ∈ ℝ ) |
| 41 | 13 | nnred | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) ∧ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) → 𝑘 ∈ ℝ ) |
| 42 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) ∧ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) → 𝑃 ∈ ℙ ) |
| 43 | prmnn | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) | |
| 44 | 42 43 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) ∧ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) → 𝑃 ∈ ℕ ) |
| 45 | 44 | nnred | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) ∧ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) → 𝑃 ∈ ℝ ) |
| 46 | infssuzle | ⊢ ( ( 𝑇 ⊆ ( ℤ≥ ‘ 1 ) ∧ 𝑘 ∈ 𝑇 ) → inf ( 𝑇 , ℝ , < ) ≤ 𝑘 ) | |
| 47 | 35 31 46 | sylancr | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) ∧ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) → inf ( 𝑇 , ℝ , < ) ≤ 𝑘 ) |
| 48 | 7 47 | eqbrtrid | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) ∧ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) → 𝑀 ≤ 𝑘 ) |
| 49 | prmz | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) | |
| 50 | 42 49 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) ∧ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) → 𝑃 ∈ ℤ ) |
| 51 | elfzm11 | ⊢ ( ( 1 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ↔ ( 𝑘 ∈ ℤ ∧ 1 ≤ 𝑘 ∧ 𝑘 < 𝑃 ) ) ) | |
| 52 | 21 50 51 | sylancr | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) ∧ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) → ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ↔ ( 𝑘 ∈ ℤ ∧ 1 ≤ 𝑘 ∧ 𝑘 < 𝑃 ) ) ) |
| 53 | 11 52 | mpbid | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) ∧ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) → ( 𝑘 ∈ ℤ ∧ 1 ≤ 𝑘 ∧ 𝑘 < 𝑃 ) ) |
| 54 | 53 | simp3d | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) ∧ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) → 𝑘 < 𝑃 ) |
| 55 | 40 41 45 48 54 | lelttrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) ∧ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) → 𝑀 < 𝑃 ) |
| 56 | 32 55 | jca | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) ∧ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) → ( 𝑇 ≠ ∅ ∧ 𝑀 < 𝑃 ) ) |
| 57 | 56 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) → ( ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) → ( 𝑇 ≠ ∅ ∧ 𝑀 < 𝑃 ) ) ) |
| 58 | 57 | rexlimdvva | ⊢ ( 𝜑 → ( ∃ 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∃ 𝑢 ∈ ℤ[i] ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) → ( 𝑇 ≠ ∅ ∧ 𝑀 < 𝑃 ) ) ) |
| 59 | 10 58 | mpd | ⊢ ( 𝜑 → ( 𝑇 ≠ ∅ ∧ 𝑀 < 𝑃 ) ) |