This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 4sq . Inductive step, odd prime case. (Contributed by Mario Carneiro, 16-Jul-2014) (Revised by AV, 14-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 4sq.1 | ⊢ 𝑆 = { 𝑛 ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ 𝑛 = ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) } | |
| 4sq.2 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | ||
| 4sq.3 | ⊢ ( 𝜑 → 𝑃 = ( ( 2 · 𝑁 ) + 1 ) ) | ||
| 4sq.4 | ⊢ ( 𝜑 → 𝑃 ∈ ℙ ) | ||
| 4sq.5 | ⊢ ( 𝜑 → ( 0 ... ( 2 · 𝑁 ) ) ⊆ 𝑆 ) | ||
| 4sq.6 | ⊢ 𝑇 = { 𝑖 ∈ ℕ ∣ ( 𝑖 · 𝑃 ) ∈ 𝑆 } | ||
| 4sq.7 | ⊢ 𝑀 = inf ( 𝑇 , ℝ , < ) | ||
| Assertion | 4sqlem18 | ⊢ ( 𝜑 → 𝑃 ∈ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4sq.1 | ⊢ 𝑆 = { 𝑛 ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ 𝑛 = ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) } | |
| 2 | 4sq.2 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | |
| 3 | 4sq.3 | ⊢ ( 𝜑 → 𝑃 = ( ( 2 · 𝑁 ) + 1 ) ) | |
| 4 | 4sq.4 | ⊢ ( 𝜑 → 𝑃 ∈ ℙ ) | |
| 5 | 4sq.5 | ⊢ ( 𝜑 → ( 0 ... ( 2 · 𝑁 ) ) ⊆ 𝑆 ) | |
| 6 | 4sq.6 | ⊢ 𝑇 = { 𝑖 ∈ ℕ ∣ ( 𝑖 · 𝑃 ) ∈ 𝑆 } | |
| 7 | 4sq.7 | ⊢ 𝑀 = inf ( 𝑇 , ℝ , < ) | |
| 8 | prmnn | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) | |
| 9 | 4 8 | syl | ⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
| 10 | 9 | nncnd | ⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
| 11 | 10 | mullidd | ⊢ ( 𝜑 → ( 1 · 𝑃 ) = 𝑃 ) |
| 12 | 6 | ssrab3 | ⊢ 𝑇 ⊆ ℕ |
| 13 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 14 | 12 13 | sseqtri | ⊢ 𝑇 ⊆ ( ℤ≥ ‘ 1 ) |
| 15 | 1 2 3 4 5 6 7 | 4sqlem13 | ⊢ ( 𝜑 → ( 𝑇 ≠ ∅ ∧ 𝑀 < 𝑃 ) ) |
| 16 | 15 | simpld | ⊢ ( 𝜑 → 𝑇 ≠ ∅ ) |
| 17 | infssuzcl | ⊢ ( ( 𝑇 ⊆ ( ℤ≥ ‘ 1 ) ∧ 𝑇 ≠ ∅ ) → inf ( 𝑇 , ℝ , < ) ∈ 𝑇 ) | |
| 18 | 14 16 17 | sylancr | ⊢ ( 𝜑 → inf ( 𝑇 , ℝ , < ) ∈ 𝑇 ) |
| 19 | 7 18 | eqeltrid | ⊢ ( 𝜑 → 𝑀 ∈ 𝑇 ) |
| 20 | oveq1 | ⊢ ( 𝑖 = 𝑀 → ( 𝑖 · 𝑃 ) = ( 𝑀 · 𝑃 ) ) | |
| 21 | 20 | eleq1d | ⊢ ( 𝑖 = 𝑀 → ( ( 𝑖 · 𝑃 ) ∈ 𝑆 ↔ ( 𝑀 · 𝑃 ) ∈ 𝑆 ) ) |
| 22 | 21 6 | elrab2 | ⊢ ( 𝑀 ∈ 𝑇 ↔ ( 𝑀 ∈ ℕ ∧ ( 𝑀 · 𝑃 ) ∈ 𝑆 ) ) |
| 23 | 19 22 | sylib | ⊢ ( 𝜑 → ( 𝑀 ∈ ℕ ∧ ( 𝑀 · 𝑃 ) ∈ 𝑆 ) ) |
| 24 | 23 | simprd | ⊢ ( 𝜑 → ( 𝑀 · 𝑃 ) ∈ 𝑆 ) |
| 25 | 1 | 4sqlem2 | ⊢ ( ( 𝑀 · 𝑃 ) ∈ 𝑆 ↔ ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ∃ 𝑐 ∈ ℤ ∃ 𝑑 ∈ ℤ ( 𝑀 · 𝑃 ) = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ) |
| 26 | 24 25 | sylib | ⊢ ( 𝜑 → ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ∃ 𝑐 ∈ ℤ ∃ 𝑑 ∈ ℤ ( 𝑀 · 𝑃 ) = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ) |
| 27 | 26 | adantr | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) → ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ∃ 𝑐 ∈ ℤ ∃ 𝑑 ∈ ℤ ( 𝑀 · 𝑃 ) = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ) |
| 28 | simp1l | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ ) ) ∧ ( 𝑀 · 𝑃 ) = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ) → 𝜑 ) | |
| 29 | 28 2 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ ) ) ∧ ( 𝑀 · 𝑃 ) = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ) → 𝑁 ∈ ℕ ) |
| 30 | 28 3 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ ) ) ∧ ( 𝑀 · 𝑃 ) = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ) → 𝑃 = ( ( 2 · 𝑁 ) + 1 ) ) |
| 31 | 28 4 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ ) ) ∧ ( 𝑀 · 𝑃 ) = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ) → 𝑃 ∈ ℙ ) |
| 32 | 28 5 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ ) ) ∧ ( 𝑀 · 𝑃 ) = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ) → ( 0 ... ( 2 · 𝑁 ) ) ⊆ 𝑆 ) |
| 33 | simp1r | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ ) ) ∧ ( 𝑀 · 𝑃 ) = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ) → 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) | |
| 34 | simp2ll | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ ) ) ∧ ( 𝑀 · 𝑃 ) = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ) → 𝑎 ∈ ℤ ) | |
| 35 | simp2lr | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ ) ) ∧ ( 𝑀 · 𝑃 ) = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ) → 𝑏 ∈ ℤ ) | |
| 36 | simp2rl | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ ) ) ∧ ( 𝑀 · 𝑃 ) = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ) → 𝑐 ∈ ℤ ) | |
| 37 | simp2rr | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ ) ) ∧ ( 𝑀 · 𝑃 ) = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ) → 𝑑 ∈ ℤ ) | |
| 38 | eqid | ⊢ ( ( ( 𝑎 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) = ( ( ( 𝑎 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) | |
| 39 | eqid | ⊢ ( ( ( 𝑏 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) = ( ( ( 𝑏 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) | |
| 40 | eqid | ⊢ ( ( ( 𝑐 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) = ( ( ( 𝑐 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) | |
| 41 | eqid | ⊢ ( ( ( 𝑑 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) = ( ( ( 𝑑 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) | |
| 42 | eqid | ⊢ ( ( ( ( ( ( ( 𝑎 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) ↑ 2 ) + ( ( ( ( 𝑏 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) ↑ 2 ) ) + ( ( ( ( ( 𝑐 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) ↑ 2 ) + ( ( ( ( 𝑑 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) ↑ 2 ) ) ) / 𝑀 ) = ( ( ( ( ( ( ( 𝑎 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) ↑ 2 ) + ( ( ( ( 𝑏 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) ↑ 2 ) ) + ( ( ( ( ( 𝑐 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) ↑ 2 ) + ( ( ( ( 𝑑 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) ↑ 2 ) ) ) / 𝑀 ) | |
| 43 | simp3 | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ ) ) ∧ ( 𝑀 · 𝑃 ) = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ) → ( 𝑀 · 𝑃 ) = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ) | |
| 44 | 1 29 30 31 32 6 7 33 34 35 36 37 38 39 40 41 42 43 | 4sqlem17 | ⊢ ¬ ( ( 𝜑 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ ) ) ∧ ( 𝑀 · 𝑃 ) = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ) |
| 45 | 44 | pm2.21i | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ ) ) ∧ ( 𝑀 · 𝑃 ) = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ) → ¬ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) |
| 46 | 45 | 3expia | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ ) ) ) → ( ( 𝑀 · 𝑃 ) = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) → ¬ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 47 | 46 | anassrs | ⊢ ( ( ( ( 𝜑 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ ) ) → ( ( 𝑀 · 𝑃 ) = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) → ¬ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 48 | 47 | rexlimdvva | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ∃ 𝑐 ∈ ℤ ∃ 𝑑 ∈ ℤ ( 𝑀 · 𝑃 ) = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) → ¬ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 49 | 48 | rexlimdvva | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) → ( ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ∃ 𝑐 ∈ ℤ ∃ 𝑑 ∈ ℤ ( 𝑀 · 𝑃 ) = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) → ¬ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 50 | 27 49 | mpd | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) → ¬ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) |
| 51 | 50 | pm2.01da | ⊢ ( 𝜑 → ¬ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) |
| 52 | 23 | simpld | ⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 53 | elnn1uz2 | ⊢ ( 𝑀 ∈ ℕ ↔ ( 𝑀 = 1 ∨ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) ) | |
| 54 | 52 53 | sylib | ⊢ ( 𝜑 → ( 𝑀 = 1 ∨ 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 55 | 54 | ord | ⊢ ( 𝜑 → ( ¬ 𝑀 = 1 → 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 56 | 51 55 | mt3d | ⊢ ( 𝜑 → 𝑀 = 1 ) |
| 57 | 56 19 | eqeltrrd | ⊢ ( 𝜑 → 1 ∈ 𝑇 ) |
| 58 | oveq1 | ⊢ ( 𝑖 = 1 → ( 𝑖 · 𝑃 ) = ( 1 · 𝑃 ) ) | |
| 59 | 58 | eleq1d | ⊢ ( 𝑖 = 1 → ( ( 𝑖 · 𝑃 ) ∈ 𝑆 ↔ ( 1 · 𝑃 ) ∈ 𝑆 ) ) |
| 60 | 59 6 | elrab2 | ⊢ ( 1 ∈ 𝑇 ↔ ( 1 ∈ ℕ ∧ ( 1 · 𝑃 ) ∈ 𝑆 ) ) |
| 61 | 60 | simprbi | ⊢ ( 1 ∈ 𝑇 → ( 1 · 𝑃 ) ∈ 𝑆 ) |
| 62 | 57 61 | syl | ⊢ ( 𝜑 → ( 1 · 𝑃 ) ∈ 𝑆 ) |
| 63 | 11 62 | eqeltrrd | ⊢ ( 𝜑 → 𝑃 ∈ 𝑆 ) |