This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 4sq . (Contributed by Mario Carneiro, 16-Jul-2014) (Revised by AV, 14-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 4sq.1 | ⊢ 𝑆 = { 𝑛 ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ 𝑛 = ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) } | |
| 4sq.2 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | ||
| 4sq.3 | ⊢ ( 𝜑 → 𝑃 = ( ( 2 · 𝑁 ) + 1 ) ) | ||
| 4sq.4 | ⊢ ( 𝜑 → 𝑃 ∈ ℙ ) | ||
| 4sq.5 | ⊢ ( 𝜑 → ( 0 ... ( 2 · 𝑁 ) ) ⊆ 𝑆 ) | ||
| 4sq.6 | ⊢ 𝑇 = { 𝑖 ∈ ℕ ∣ ( 𝑖 · 𝑃 ) ∈ 𝑆 } | ||
| 4sq.7 | ⊢ 𝑀 = inf ( 𝑇 , ℝ , < ) | ||
| 4sq.m | ⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) | ||
| 4sq.a | ⊢ ( 𝜑 → 𝐴 ∈ ℤ ) | ||
| 4sq.b | ⊢ ( 𝜑 → 𝐵 ∈ ℤ ) | ||
| 4sq.c | ⊢ ( 𝜑 → 𝐶 ∈ ℤ ) | ||
| 4sq.d | ⊢ ( 𝜑 → 𝐷 ∈ ℤ ) | ||
| 4sq.e | ⊢ 𝐸 = ( ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) | ||
| 4sq.f | ⊢ 𝐹 = ( ( ( 𝐵 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) | ||
| 4sq.g | ⊢ 𝐺 = ( ( ( 𝐶 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) | ||
| 4sq.h | ⊢ 𝐻 = ( ( ( 𝐷 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) | ||
| 4sq.r | ⊢ 𝑅 = ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) | ||
| 4sq.p | ⊢ ( 𝜑 → ( 𝑀 · 𝑃 ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ) | ||
| Assertion | 4sqlem14 | ⊢ ( 𝜑 → 𝑅 ∈ ℕ0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4sq.1 | ⊢ 𝑆 = { 𝑛 ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ 𝑛 = ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) } | |
| 2 | 4sq.2 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | |
| 3 | 4sq.3 | ⊢ ( 𝜑 → 𝑃 = ( ( 2 · 𝑁 ) + 1 ) ) | |
| 4 | 4sq.4 | ⊢ ( 𝜑 → 𝑃 ∈ ℙ ) | |
| 5 | 4sq.5 | ⊢ ( 𝜑 → ( 0 ... ( 2 · 𝑁 ) ) ⊆ 𝑆 ) | |
| 6 | 4sq.6 | ⊢ 𝑇 = { 𝑖 ∈ ℕ ∣ ( 𝑖 · 𝑃 ) ∈ 𝑆 } | |
| 7 | 4sq.7 | ⊢ 𝑀 = inf ( 𝑇 , ℝ , < ) | |
| 8 | 4sq.m | ⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) | |
| 9 | 4sq.a | ⊢ ( 𝜑 → 𝐴 ∈ ℤ ) | |
| 10 | 4sq.b | ⊢ ( 𝜑 → 𝐵 ∈ ℤ ) | |
| 11 | 4sq.c | ⊢ ( 𝜑 → 𝐶 ∈ ℤ ) | |
| 12 | 4sq.d | ⊢ ( 𝜑 → 𝐷 ∈ ℤ ) | |
| 13 | 4sq.e | ⊢ 𝐸 = ( ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) | |
| 14 | 4sq.f | ⊢ 𝐹 = ( ( ( 𝐵 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) | |
| 15 | 4sq.g | ⊢ 𝐺 = ( ( ( 𝐶 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) | |
| 16 | 4sq.h | ⊢ 𝐻 = ( ( ( 𝐷 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) | |
| 17 | 4sq.r | ⊢ 𝑅 = ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) | |
| 18 | 4sq.p | ⊢ ( 𝜑 → ( 𝑀 · 𝑃 ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ) | |
| 19 | 6 | ssrab3 | ⊢ 𝑇 ⊆ ℕ |
| 20 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 21 | 19 20 | sseqtri | ⊢ 𝑇 ⊆ ( ℤ≥ ‘ 1 ) |
| 22 | 1 2 3 4 5 6 7 | 4sqlem13 | ⊢ ( 𝜑 → ( 𝑇 ≠ ∅ ∧ 𝑀 < 𝑃 ) ) |
| 23 | 22 | simpld | ⊢ ( 𝜑 → 𝑇 ≠ ∅ ) |
| 24 | infssuzcl | ⊢ ( ( 𝑇 ⊆ ( ℤ≥ ‘ 1 ) ∧ 𝑇 ≠ ∅ ) → inf ( 𝑇 , ℝ , < ) ∈ 𝑇 ) | |
| 25 | 21 23 24 | sylancr | ⊢ ( 𝜑 → inf ( 𝑇 , ℝ , < ) ∈ 𝑇 ) |
| 26 | 7 25 | eqeltrid | ⊢ ( 𝜑 → 𝑀 ∈ 𝑇 ) |
| 27 | 19 26 | sselid | ⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 28 | 27 | nnzd | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 29 | prmz | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) | |
| 30 | 4 29 | syl | ⊢ ( 𝜑 → 𝑃 ∈ ℤ ) |
| 31 | 28 30 | zmulcld | ⊢ ( 𝜑 → ( 𝑀 · 𝑃 ) ∈ ℤ ) |
| 32 | 9 27 13 | 4sqlem5 | ⊢ ( 𝜑 → ( 𝐸 ∈ ℤ ∧ ( ( 𝐴 − 𝐸 ) / 𝑀 ) ∈ ℤ ) ) |
| 33 | 32 | simpld | ⊢ ( 𝜑 → 𝐸 ∈ ℤ ) |
| 34 | zsqcl2 | ⊢ ( 𝐸 ∈ ℤ → ( 𝐸 ↑ 2 ) ∈ ℕ0 ) | |
| 35 | 33 34 | syl | ⊢ ( 𝜑 → ( 𝐸 ↑ 2 ) ∈ ℕ0 ) |
| 36 | 10 27 14 | 4sqlem5 | ⊢ ( 𝜑 → ( 𝐹 ∈ ℤ ∧ ( ( 𝐵 − 𝐹 ) / 𝑀 ) ∈ ℤ ) ) |
| 37 | 36 | simpld | ⊢ ( 𝜑 → 𝐹 ∈ ℤ ) |
| 38 | zsqcl2 | ⊢ ( 𝐹 ∈ ℤ → ( 𝐹 ↑ 2 ) ∈ ℕ0 ) | |
| 39 | 37 38 | syl | ⊢ ( 𝜑 → ( 𝐹 ↑ 2 ) ∈ ℕ0 ) |
| 40 | 35 39 | nn0addcld | ⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ∈ ℕ0 ) |
| 41 | 40 | nn0zd | ⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ∈ ℤ ) |
| 42 | 11 27 15 | 4sqlem5 | ⊢ ( 𝜑 → ( 𝐺 ∈ ℤ ∧ ( ( 𝐶 − 𝐺 ) / 𝑀 ) ∈ ℤ ) ) |
| 43 | 42 | simpld | ⊢ ( 𝜑 → 𝐺 ∈ ℤ ) |
| 44 | zsqcl2 | ⊢ ( 𝐺 ∈ ℤ → ( 𝐺 ↑ 2 ) ∈ ℕ0 ) | |
| 45 | 43 44 | syl | ⊢ ( 𝜑 → ( 𝐺 ↑ 2 ) ∈ ℕ0 ) |
| 46 | 12 27 16 | 4sqlem5 | ⊢ ( 𝜑 → ( 𝐻 ∈ ℤ ∧ ( ( 𝐷 − 𝐻 ) / 𝑀 ) ∈ ℤ ) ) |
| 47 | 46 | simpld | ⊢ ( 𝜑 → 𝐻 ∈ ℤ ) |
| 48 | zsqcl2 | ⊢ ( 𝐻 ∈ ℤ → ( 𝐻 ↑ 2 ) ∈ ℕ0 ) | |
| 49 | 47 48 | syl | ⊢ ( 𝜑 → ( 𝐻 ↑ 2 ) ∈ ℕ0 ) |
| 50 | 45 49 | nn0addcld | ⊢ ( 𝜑 → ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ∈ ℕ0 ) |
| 51 | 50 | nn0zd | ⊢ ( 𝜑 → ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ∈ ℤ ) |
| 52 | 41 51 | zaddcld | ⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ∈ ℤ ) |
| 53 | 31 52 | zsubcld | ⊢ ( 𝜑 → ( ( 𝑀 · 𝑃 ) − ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) ∈ ℤ ) |
| 54 | dvdsmul1 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → 𝑀 ∥ ( 𝑀 · 𝑃 ) ) | |
| 55 | 28 30 54 | syl2anc | ⊢ ( 𝜑 → 𝑀 ∥ ( 𝑀 · 𝑃 ) ) |
| 56 | zsqcl | ⊢ ( 𝐴 ∈ ℤ → ( 𝐴 ↑ 2 ) ∈ ℤ ) | |
| 57 | 9 56 | syl | ⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) ∈ ℤ ) |
| 58 | zsqcl | ⊢ ( 𝐵 ∈ ℤ → ( 𝐵 ↑ 2 ) ∈ ℤ ) | |
| 59 | 10 58 | syl | ⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ∈ ℤ ) |
| 60 | 57 59 | zaddcld | ⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ∈ ℤ ) |
| 61 | 60 41 | zsubcld | ⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) ∈ ℤ ) |
| 62 | zsqcl | ⊢ ( 𝐶 ∈ ℤ → ( 𝐶 ↑ 2 ) ∈ ℤ ) | |
| 63 | 11 62 | syl | ⊢ ( 𝜑 → ( 𝐶 ↑ 2 ) ∈ ℤ ) |
| 64 | zsqcl | ⊢ ( 𝐷 ∈ ℤ → ( 𝐷 ↑ 2 ) ∈ ℤ ) | |
| 65 | 12 64 | syl | ⊢ ( 𝜑 → ( 𝐷 ↑ 2 ) ∈ ℤ ) |
| 66 | 63 65 | zaddcld | ⊢ ( 𝜑 → ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ∈ ℤ ) |
| 67 | 66 51 | zsubcld | ⊢ ( 𝜑 → ( ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) − ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ∈ ℤ ) |
| 68 | 35 | nn0zd | ⊢ ( 𝜑 → ( 𝐸 ↑ 2 ) ∈ ℤ ) |
| 69 | 57 68 | zsubcld | ⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) − ( 𝐸 ↑ 2 ) ) ∈ ℤ ) |
| 70 | 39 | nn0zd | ⊢ ( 𝜑 → ( 𝐹 ↑ 2 ) ∈ ℤ ) |
| 71 | 59 70 | zsubcld | ⊢ ( 𝜑 → ( ( 𝐵 ↑ 2 ) − ( 𝐹 ↑ 2 ) ) ∈ ℤ ) |
| 72 | 9 27 13 | 4sqlem8 | ⊢ ( 𝜑 → 𝑀 ∥ ( ( 𝐴 ↑ 2 ) − ( 𝐸 ↑ 2 ) ) ) |
| 73 | 10 27 14 | 4sqlem8 | ⊢ ( 𝜑 → 𝑀 ∥ ( ( 𝐵 ↑ 2 ) − ( 𝐹 ↑ 2 ) ) ) |
| 74 | 28 69 71 72 73 | dvds2addd | ⊢ ( 𝜑 → 𝑀 ∥ ( ( ( 𝐴 ↑ 2 ) − ( 𝐸 ↑ 2 ) ) + ( ( 𝐵 ↑ 2 ) − ( 𝐹 ↑ 2 ) ) ) ) |
| 75 | 9 | zcnd | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 76 | 75 | sqcld | ⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 77 | 10 | zcnd | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 78 | 77 | sqcld | ⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ∈ ℂ ) |
| 79 | 33 | zcnd | ⊢ ( 𝜑 → 𝐸 ∈ ℂ ) |
| 80 | 79 | sqcld | ⊢ ( 𝜑 → ( 𝐸 ↑ 2 ) ∈ ℂ ) |
| 81 | 37 | zcnd | ⊢ ( 𝜑 → 𝐹 ∈ ℂ ) |
| 82 | 81 | sqcld | ⊢ ( 𝜑 → ( 𝐹 ↑ 2 ) ∈ ℂ ) |
| 83 | 76 78 80 82 | addsub4d | ⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) = ( ( ( 𝐴 ↑ 2 ) − ( 𝐸 ↑ 2 ) ) + ( ( 𝐵 ↑ 2 ) − ( 𝐹 ↑ 2 ) ) ) ) |
| 84 | 74 83 | breqtrrd | ⊢ ( 𝜑 → 𝑀 ∥ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) ) |
| 85 | 45 | nn0zd | ⊢ ( 𝜑 → ( 𝐺 ↑ 2 ) ∈ ℤ ) |
| 86 | 63 85 | zsubcld | ⊢ ( 𝜑 → ( ( 𝐶 ↑ 2 ) − ( 𝐺 ↑ 2 ) ) ∈ ℤ ) |
| 87 | 49 | nn0zd | ⊢ ( 𝜑 → ( 𝐻 ↑ 2 ) ∈ ℤ ) |
| 88 | 65 87 | zsubcld | ⊢ ( 𝜑 → ( ( 𝐷 ↑ 2 ) − ( 𝐻 ↑ 2 ) ) ∈ ℤ ) |
| 89 | 11 27 15 | 4sqlem8 | ⊢ ( 𝜑 → 𝑀 ∥ ( ( 𝐶 ↑ 2 ) − ( 𝐺 ↑ 2 ) ) ) |
| 90 | 12 27 16 | 4sqlem8 | ⊢ ( 𝜑 → 𝑀 ∥ ( ( 𝐷 ↑ 2 ) − ( 𝐻 ↑ 2 ) ) ) |
| 91 | 28 86 88 89 90 | dvds2addd | ⊢ ( 𝜑 → 𝑀 ∥ ( ( ( 𝐶 ↑ 2 ) − ( 𝐺 ↑ 2 ) ) + ( ( 𝐷 ↑ 2 ) − ( 𝐻 ↑ 2 ) ) ) ) |
| 92 | 11 | zcnd | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 93 | 92 | sqcld | ⊢ ( 𝜑 → ( 𝐶 ↑ 2 ) ∈ ℂ ) |
| 94 | 12 | zcnd | ⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 95 | 94 | sqcld | ⊢ ( 𝜑 → ( 𝐷 ↑ 2 ) ∈ ℂ ) |
| 96 | 43 | zcnd | ⊢ ( 𝜑 → 𝐺 ∈ ℂ ) |
| 97 | 96 | sqcld | ⊢ ( 𝜑 → ( 𝐺 ↑ 2 ) ∈ ℂ ) |
| 98 | 47 | zcnd | ⊢ ( 𝜑 → 𝐻 ∈ ℂ ) |
| 99 | 98 | sqcld | ⊢ ( 𝜑 → ( 𝐻 ↑ 2 ) ∈ ℂ ) |
| 100 | 93 95 97 99 | addsub4d | ⊢ ( 𝜑 → ( ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) − ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) = ( ( ( 𝐶 ↑ 2 ) − ( 𝐺 ↑ 2 ) ) + ( ( 𝐷 ↑ 2 ) − ( 𝐻 ↑ 2 ) ) ) ) |
| 101 | 91 100 | breqtrrd | ⊢ ( 𝜑 → 𝑀 ∥ ( ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) − ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) |
| 102 | 28 61 67 84 101 | dvds2addd | ⊢ ( 𝜑 → 𝑀 ∥ ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) + ( ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) − ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) ) |
| 103 | 18 | oveq1d | ⊢ ( 𝜑 → ( ( 𝑀 · 𝑃 ) − ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) = ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) − ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) ) |
| 104 | 76 78 | addcld | ⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ∈ ℂ ) |
| 105 | 93 95 | addcld | ⊢ ( 𝜑 → ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ∈ ℂ ) |
| 106 | 80 82 | addcld | ⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ∈ ℂ ) |
| 107 | 97 99 | addcld | ⊢ ( 𝜑 → ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ∈ ℂ ) |
| 108 | 104 105 106 107 | addsub4d | ⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) − ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) = ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) + ( ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) − ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) ) |
| 109 | 103 108 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑀 · 𝑃 ) − ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) = ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) + ( ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) − ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) ) |
| 110 | 102 109 | breqtrrd | ⊢ ( 𝜑 → 𝑀 ∥ ( ( 𝑀 · 𝑃 ) − ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) ) |
| 111 | 28 31 53 55 110 | dvds2subd | ⊢ ( 𝜑 → 𝑀 ∥ ( ( 𝑀 · 𝑃 ) − ( ( 𝑀 · 𝑃 ) − ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) ) ) |
| 112 | 27 | nncnd | ⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 113 | prmnn | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) | |
| 114 | 4 113 | syl | ⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
| 115 | 114 | nncnd | ⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
| 116 | 112 115 | mulcld | ⊢ ( 𝜑 → ( 𝑀 · 𝑃 ) ∈ ℂ ) |
| 117 | 106 107 | addcld | ⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ∈ ℂ ) |
| 118 | 116 117 | nncand | ⊢ ( 𝜑 → ( ( 𝑀 · 𝑃 ) − ( ( 𝑀 · 𝑃 ) − ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) ) = ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) |
| 119 | 111 118 | breqtrd | ⊢ ( 𝜑 → 𝑀 ∥ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) |
| 120 | 27 | nnne0d | ⊢ ( 𝜑 → 𝑀 ≠ 0 ) |
| 121 | 40 50 | nn0addcld | ⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ∈ ℕ0 ) |
| 122 | 121 | nn0zd | ⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ∈ ℤ ) |
| 123 | dvdsval2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ∈ ℤ ) → ( 𝑀 ∥ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ↔ ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) ∈ ℤ ) ) | |
| 124 | 28 120 122 123 | syl3anc | ⊢ ( 𝜑 → ( 𝑀 ∥ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ↔ ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) ∈ ℤ ) ) |
| 125 | 119 124 | mpbid | ⊢ ( 𝜑 → ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) ∈ ℤ ) |
| 126 | 121 | nn0red | ⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ∈ ℝ ) |
| 127 | 121 | nn0ge0d | ⊢ ( 𝜑 → 0 ≤ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) |
| 128 | 27 | nnred | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 129 | 27 | nngt0d | ⊢ ( 𝜑 → 0 < 𝑀 ) |
| 130 | divge0 | ⊢ ( ( ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ∈ ℝ ∧ 0 ≤ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) ∧ ( 𝑀 ∈ ℝ ∧ 0 < 𝑀 ) ) → 0 ≤ ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) ) | |
| 131 | 126 127 128 129 130 | syl22anc | ⊢ ( 𝜑 → 0 ≤ ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) ) |
| 132 | elnn0z | ⊢ ( ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) ∈ ℕ0 ↔ ( ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) ∈ ℤ ∧ 0 ≤ ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) ) ) | |
| 133 | 125 131 132 | sylanbrc | ⊢ ( 𝜑 → ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) ∈ ℕ0 ) |
| 134 | 17 133 | eqeltrid | ⊢ ( 𝜑 → 𝑅 ∈ ℕ0 ) |