This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 4sq . (Contributed by Mario Carneiro, 15-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 4sqlem5.2 | ⊢ ( 𝜑 → 𝐴 ∈ ℤ ) | |
| 4sqlem5.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℕ ) | ||
| 4sqlem5.4 | ⊢ 𝐵 = ( ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) | ||
| Assertion | 4sqlem8 | ⊢ ( 𝜑 → 𝑀 ∥ ( ( 𝐴 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4sqlem5.2 | ⊢ ( 𝜑 → 𝐴 ∈ ℤ ) | |
| 2 | 4sqlem5.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℕ ) | |
| 3 | 4sqlem5.4 | ⊢ 𝐵 = ( ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) | |
| 4 | 2 | nnzd | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 5 | 1 2 3 | 4sqlem5 | ⊢ ( 𝜑 → ( 𝐵 ∈ ℤ ∧ ( ( 𝐴 − 𝐵 ) / 𝑀 ) ∈ ℤ ) ) |
| 6 | 5 | simpld | ⊢ ( 𝜑 → 𝐵 ∈ ℤ ) |
| 7 | 1 6 | zsubcld | ⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) ∈ ℤ ) |
| 8 | zsqcl | ⊢ ( 𝐴 ∈ ℤ → ( 𝐴 ↑ 2 ) ∈ ℤ ) | |
| 9 | 1 8 | syl | ⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) ∈ ℤ ) |
| 10 | zsqcl | ⊢ ( 𝐵 ∈ ℤ → ( 𝐵 ↑ 2 ) ∈ ℤ ) | |
| 11 | 6 10 | syl | ⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ∈ ℤ ) |
| 12 | 9 11 | zsubcld | ⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ∈ ℤ ) |
| 13 | 5 | simprd | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) / 𝑀 ) ∈ ℤ ) |
| 14 | 2 | nnne0d | ⊢ ( 𝜑 → 𝑀 ≠ 0 ) |
| 15 | dvdsval2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ ( 𝐴 − 𝐵 ) ∈ ℤ ) → ( 𝑀 ∥ ( 𝐴 − 𝐵 ) ↔ ( ( 𝐴 − 𝐵 ) / 𝑀 ) ∈ ℤ ) ) | |
| 16 | 4 14 7 15 | syl3anc | ⊢ ( 𝜑 → ( 𝑀 ∥ ( 𝐴 − 𝐵 ) ↔ ( ( 𝐴 − 𝐵 ) / 𝑀 ) ∈ ℤ ) ) |
| 17 | 13 16 | mpbird | ⊢ ( 𝜑 → 𝑀 ∥ ( 𝐴 − 𝐵 ) ) |
| 18 | 1 6 | zaddcld | ⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) ∈ ℤ ) |
| 19 | dvdsmul2 | ⊢ ( ( ( 𝐴 + 𝐵 ) ∈ ℤ ∧ ( 𝐴 − 𝐵 ) ∈ ℤ ) → ( 𝐴 − 𝐵 ) ∥ ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) | |
| 20 | 18 7 19 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) ∥ ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) |
| 21 | 1 | zcnd | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 22 | 6 | zcnd | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 23 | subsq | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) | |
| 24 | 21 22 23 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) |
| 25 | 20 24 | breqtrrd | ⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) ∥ ( ( 𝐴 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) |
| 26 | 4 7 12 17 25 | dvdstrd | ⊢ ( 𝜑 → 𝑀 ∥ ( ( 𝐴 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) |