This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 4sq . The set S is the set of all numbers that are expressible as a sum of four squares. Our goal is to show that S = NN0 ; here we show one subset direction. (Contributed by Mario Carneiro, 14-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 4sq.1 | ⊢ 𝑆 = { 𝑛 ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ 𝑛 = ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) } | |
| Assertion | 4sqlem1 | ⊢ 𝑆 ⊆ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4sq.1 | ⊢ 𝑆 = { 𝑛 ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ 𝑛 = ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) } | |
| 2 | zsqcl2 | ⊢ ( 𝑥 ∈ ℤ → ( 𝑥 ↑ 2 ) ∈ ℕ0 ) | |
| 3 | zsqcl2 | ⊢ ( 𝑦 ∈ ℤ → ( 𝑦 ↑ 2 ) ∈ ℕ0 ) | |
| 4 | nn0addcl | ⊢ ( ( ( 𝑥 ↑ 2 ) ∈ ℕ0 ∧ ( 𝑦 ↑ 2 ) ∈ ℕ0 ) → ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ∈ ℕ0 ) | |
| 5 | 2 3 4 | syl2an | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ∈ ℕ0 ) |
| 6 | zsqcl2 | ⊢ ( 𝑧 ∈ ℤ → ( 𝑧 ↑ 2 ) ∈ ℕ0 ) | |
| 7 | zsqcl2 | ⊢ ( 𝑤 ∈ ℤ → ( 𝑤 ↑ 2 ) ∈ ℕ0 ) | |
| 8 | nn0addcl | ⊢ ( ( ( 𝑧 ↑ 2 ) ∈ ℕ0 ∧ ( 𝑤 ↑ 2 ) ∈ ℕ0 ) → ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ∈ ℕ0 ) | |
| 9 | 6 7 8 | syl2an | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ ) → ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ∈ ℕ0 ) |
| 10 | nn0addcl | ⊢ ( ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ∈ ℕ0 ∧ ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ∈ ℕ0 ) → ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) ∈ ℕ0 ) | |
| 11 | 5 9 10 | syl2an | ⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ) → ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) ∈ ℕ0 ) |
| 12 | eleq1a | ⊢ ( ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) ∈ ℕ0 → ( 𝑛 = ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) → 𝑛 ∈ ℕ0 ) ) | |
| 13 | 11 12 | syl | ⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ) → ( 𝑛 = ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) → 𝑛 ∈ ℕ0 ) ) |
| 14 | 13 | rexlimdvva | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ 𝑛 = ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) → 𝑛 ∈ ℕ0 ) ) |
| 15 | 14 | rexlimivv | ⊢ ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ 𝑛 = ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) → 𝑛 ∈ ℕ0 ) |
| 16 | 15 | abssi | ⊢ { 𝑛 ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ 𝑛 = ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) } ⊆ ℕ0 |
| 17 | 1 16 | eqsstri | ⊢ 𝑆 ⊆ ℕ0 |