This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 4sq . (Contributed by Mario Carneiro, 15-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 4sqlem5.2 | ⊢ ( 𝜑 → 𝐴 ∈ ℤ ) | |
| 4sqlem5.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℕ ) | ||
| 4sqlem5.4 | ⊢ 𝐵 = ( ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) | ||
| Assertion | 4sqlem6 | ⊢ ( 𝜑 → ( - ( 𝑀 / 2 ) ≤ 𝐵 ∧ 𝐵 < ( 𝑀 / 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4sqlem5.2 | ⊢ ( 𝜑 → 𝐴 ∈ ℤ ) | |
| 2 | 4sqlem5.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℕ ) | |
| 3 | 4sqlem5.4 | ⊢ 𝐵 = ( ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) | |
| 4 | 0red | ⊢ ( 𝜑 → 0 ∈ ℝ ) | |
| 5 | 1 | zred | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 6 | 2 | nnred | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 7 | 6 | rehalfcld | ⊢ ( 𝜑 → ( 𝑀 / 2 ) ∈ ℝ ) |
| 8 | 5 7 | readdcld | ⊢ ( 𝜑 → ( 𝐴 + ( 𝑀 / 2 ) ) ∈ ℝ ) |
| 9 | 2 | nnrpd | ⊢ ( 𝜑 → 𝑀 ∈ ℝ+ ) |
| 10 | 8 9 | modcld | ⊢ ( 𝜑 → ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) ∈ ℝ ) |
| 11 | modge0 | ⊢ ( ( ( 𝐴 + ( 𝑀 / 2 ) ) ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → 0 ≤ ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) ) | |
| 12 | 8 9 11 | syl2anc | ⊢ ( 𝜑 → 0 ≤ ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) ) |
| 13 | 4 10 7 12 | lesub1dd | ⊢ ( 𝜑 → ( 0 − ( 𝑀 / 2 ) ) ≤ ( ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) ) |
| 14 | df-neg | ⊢ - ( 𝑀 / 2 ) = ( 0 − ( 𝑀 / 2 ) ) | |
| 15 | 13 14 3 | 3brtr4g | ⊢ ( 𝜑 → - ( 𝑀 / 2 ) ≤ 𝐵 ) |
| 16 | modlt | ⊢ ( ( ( 𝐴 + ( 𝑀 / 2 ) ) ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) < 𝑀 ) | |
| 17 | 8 9 16 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) < 𝑀 ) |
| 18 | 2 | nncnd | ⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 19 | 18 | 2halvesd | ⊢ ( 𝜑 → ( ( 𝑀 / 2 ) + ( 𝑀 / 2 ) ) = 𝑀 ) |
| 20 | 17 19 | breqtrrd | ⊢ ( 𝜑 → ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) < ( ( 𝑀 / 2 ) + ( 𝑀 / 2 ) ) ) |
| 21 | 10 7 7 | ltsubaddd | ⊢ ( 𝜑 → ( ( ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) < ( 𝑀 / 2 ) ↔ ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) < ( ( 𝑀 / 2 ) + ( 𝑀 / 2 ) ) ) ) |
| 22 | 20 21 | mpbird | ⊢ ( 𝜑 → ( ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) < ( 𝑀 / 2 ) ) |
| 23 | 3 22 | eqbrtrid | ⊢ ( 𝜑 → 𝐵 < ( 𝑀 / 2 ) ) |
| 24 | 15 23 | jca | ⊢ ( 𝜑 → ( - ( 𝑀 / 2 ) ≤ 𝐵 ∧ 𝐵 < ( 𝑀 / 2 ) ) ) |