This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A multiple of two is prime iff the multiplier is one. (Contributed by AV, 8-Jun-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2mulprm | ⊢ ( 𝐴 ∈ ℤ → ( ( 2 · 𝐴 ) ∈ ℙ ↔ 𝐴 = 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) | |
| 2 | 0red | ⊢ ( 𝐴 ∈ ℤ → 0 ∈ ℝ ) | |
| 3 | 1 2 | leloed | ⊢ ( 𝐴 ∈ ℤ → ( 𝐴 ≤ 0 ↔ ( 𝐴 < 0 ∨ 𝐴 = 0 ) ) ) |
| 4 | prmnn | ⊢ ( ( 2 · 𝐴 ) ∈ ℙ → ( 2 · 𝐴 ) ∈ ℕ ) | |
| 5 | nnnn0 | ⊢ ( ( 2 · 𝐴 ) ∈ ℕ → ( 2 · 𝐴 ) ∈ ℕ0 ) | |
| 6 | nn0ge0 | ⊢ ( ( 2 · 𝐴 ) ∈ ℕ0 → 0 ≤ ( 2 · 𝐴 ) ) | |
| 7 | 2pos | ⊢ 0 < 2 | |
| 8 | 7 | a1i | ⊢ ( 𝐴 ∈ ℤ → 0 < 2 ) |
| 9 | 8 | anim1i | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐴 < 0 ) → ( 0 < 2 ∧ 𝐴 < 0 ) ) |
| 10 | 9 | olcd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐴 < 0 ) → ( ( 2 < 0 ∧ 0 < 𝐴 ) ∨ ( 0 < 2 ∧ 𝐴 < 0 ) ) ) |
| 11 | 2re | ⊢ 2 ∈ ℝ | |
| 12 | 11 | a1i | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐴 < 0 ) → 2 ∈ ℝ ) |
| 13 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐴 < 0 ) → 𝐴 ∈ ℝ ) |
| 14 | 12 13 | mul2lt0bi | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐴 < 0 ) → ( ( 2 · 𝐴 ) < 0 ↔ ( ( 2 < 0 ∧ 0 < 𝐴 ) ∨ ( 0 < 2 ∧ 𝐴 < 0 ) ) ) ) |
| 15 | 10 14 | mpbird | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐴 < 0 ) → ( 2 · 𝐴 ) < 0 ) |
| 16 | 12 13 | remulcld | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐴 < 0 ) → ( 2 · 𝐴 ) ∈ ℝ ) |
| 17 | 0red | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐴 < 0 ) → 0 ∈ ℝ ) | |
| 18 | 16 17 | ltnled | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐴 < 0 ) → ( ( 2 · 𝐴 ) < 0 ↔ ¬ 0 ≤ ( 2 · 𝐴 ) ) ) |
| 19 | 15 18 | mpbid | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐴 < 0 ) → ¬ 0 ≤ ( 2 · 𝐴 ) ) |
| 20 | 19 | ex | ⊢ ( 𝐴 ∈ ℤ → ( 𝐴 < 0 → ¬ 0 ≤ ( 2 · 𝐴 ) ) ) |
| 21 | 20 | con2d | ⊢ ( 𝐴 ∈ ℤ → ( 0 ≤ ( 2 · 𝐴 ) → ¬ 𝐴 < 0 ) ) |
| 22 | 21 | com12 | ⊢ ( 0 ≤ ( 2 · 𝐴 ) → ( 𝐴 ∈ ℤ → ¬ 𝐴 < 0 ) ) |
| 23 | 4 5 6 22 | 4syl | ⊢ ( ( 2 · 𝐴 ) ∈ ℙ → ( 𝐴 ∈ ℤ → ¬ 𝐴 < 0 ) ) |
| 24 | 23 | com12 | ⊢ ( 𝐴 ∈ ℤ → ( ( 2 · 𝐴 ) ∈ ℙ → ¬ 𝐴 < 0 ) ) |
| 25 | 24 | con2d | ⊢ ( 𝐴 ∈ ℤ → ( 𝐴 < 0 → ¬ ( 2 · 𝐴 ) ∈ ℙ ) ) |
| 26 | 25 | a1dd | ⊢ ( 𝐴 ∈ ℤ → ( 𝐴 < 0 → ( ¬ 𝐴 = 1 → ¬ ( 2 · 𝐴 ) ∈ ℙ ) ) ) |
| 27 | oveq2 | ⊢ ( 𝐴 = 0 → ( 2 · 𝐴 ) = ( 2 · 0 ) ) | |
| 28 | 2t0e0 | ⊢ ( 2 · 0 ) = 0 | |
| 29 | 27 28 | eqtrdi | ⊢ ( 𝐴 = 0 → ( 2 · 𝐴 ) = 0 ) |
| 30 | 0nprm | ⊢ ¬ 0 ∈ ℙ | |
| 31 | 30 | a1i | ⊢ ( 𝐴 = 0 → ¬ 0 ∈ ℙ ) |
| 32 | 29 31 | eqneltrd | ⊢ ( 𝐴 = 0 → ¬ ( 2 · 𝐴 ) ∈ ℙ ) |
| 33 | 32 | a1i13 | ⊢ ( 𝐴 ∈ ℤ → ( 𝐴 = 0 → ( ¬ 𝐴 = 1 → ¬ ( 2 · 𝐴 ) ∈ ℙ ) ) ) |
| 34 | 26 33 | jaod | ⊢ ( 𝐴 ∈ ℤ → ( ( 𝐴 < 0 ∨ 𝐴 = 0 ) → ( ¬ 𝐴 = 1 → ¬ ( 2 · 𝐴 ) ∈ ℙ ) ) ) |
| 35 | 3 34 | sylbid | ⊢ ( 𝐴 ∈ ℤ → ( 𝐴 ≤ 0 → ( ¬ 𝐴 = 1 → ¬ ( 2 · 𝐴 ) ∈ ℙ ) ) ) |
| 36 | 2z | ⊢ 2 ∈ ℤ | |
| 37 | uzid | ⊢ ( 2 ∈ ℤ → 2 ∈ ( ℤ≥ ‘ 2 ) ) | |
| 38 | 36 37 | ax-mp | ⊢ 2 ∈ ( ℤ≥ ‘ 2 ) |
| 39 | 36 | a1i | ⊢ ( ( 𝐴 ∈ ℤ ∧ 1 ≤ 𝐴 ∧ ¬ 𝐴 = 1 ) → 2 ∈ ℤ ) |
| 40 | simp1 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 1 ≤ 𝐴 ∧ ¬ 𝐴 = 1 ) → 𝐴 ∈ ℤ ) | |
| 41 | df-ne | ⊢ ( 𝐴 ≠ 1 ↔ ¬ 𝐴 = 1 ) | |
| 42 | 1red | ⊢ ( 𝐴 ∈ ℤ → 1 ∈ ℝ ) | |
| 43 | 42 1 | ltlend | ⊢ ( 𝐴 ∈ ℤ → ( 1 < 𝐴 ↔ ( 1 ≤ 𝐴 ∧ 𝐴 ≠ 1 ) ) ) |
| 44 | 1zzd | ⊢ ( 𝐴 ∈ ℤ → 1 ∈ ℤ ) | |
| 45 | zltp1le | ⊢ ( ( 1 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 1 < 𝐴 ↔ ( 1 + 1 ) ≤ 𝐴 ) ) | |
| 46 | 44 45 | mpancom | ⊢ ( 𝐴 ∈ ℤ → ( 1 < 𝐴 ↔ ( 1 + 1 ) ≤ 𝐴 ) ) |
| 47 | 46 | biimpd | ⊢ ( 𝐴 ∈ ℤ → ( 1 < 𝐴 → ( 1 + 1 ) ≤ 𝐴 ) ) |
| 48 | df-2 | ⊢ 2 = ( 1 + 1 ) | |
| 49 | 48 | breq1i | ⊢ ( 2 ≤ 𝐴 ↔ ( 1 + 1 ) ≤ 𝐴 ) |
| 50 | 47 49 | imbitrrdi | ⊢ ( 𝐴 ∈ ℤ → ( 1 < 𝐴 → 2 ≤ 𝐴 ) ) |
| 51 | 43 50 | sylbird | ⊢ ( 𝐴 ∈ ℤ → ( ( 1 ≤ 𝐴 ∧ 𝐴 ≠ 1 ) → 2 ≤ 𝐴 ) ) |
| 52 | 51 | expdimp | ⊢ ( ( 𝐴 ∈ ℤ ∧ 1 ≤ 𝐴 ) → ( 𝐴 ≠ 1 → 2 ≤ 𝐴 ) ) |
| 53 | 41 52 | biimtrrid | ⊢ ( ( 𝐴 ∈ ℤ ∧ 1 ≤ 𝐴 ) → ( ¬ 𝐴 = 1 → 2 ≤ 𝐴 ) ) |
| 54 | 53 | 3impia | ⊢ ( ( 𝐴 ∈ ℤ ∧ 1 ≤ 𝐴 ∧ ¬ 𝐴 = 1 ) → 2 ≤ 𝐴 ) |
| 55 | eluz2 | ⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 2 ≤ 𝐴 ) ) | |
| 56 | 39 40 54 55 | syl3anbrc | ⊢ ( ( 𝐴 ∈ ℤ ∧ 1 ≤ 𝐴 ∧ ¬ 𝐴 = 1 ) → 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) |
| 57 | nprm | ⊢ ( ( 2 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) → ¬ ( 2 · 𝐴 ) ∈ ℙ ) | |
| 58 | 38 56 57 | sylancr | ⊢ ( ( 𝐴 ∈ ℤ ∧ 1 ≤ 𝐴 ∧ ¬ 𝐴 = 1 ) → ¬ ( 2 · 𝐴 ) ∈ ℙ ) |
| 59 | 58 | 3exp | ⊢ ( 𝐴 ∈ ℤ → ( 1 ≤ 𝐴 → ( ¬ 𝐴 = 1 → ¬ ( 2 · 𝐴 ) ∈ ℙ ) ) ) |
| 60 | zle0orge1 | ⊢ ( 𝐴 ∈ ℤ → ( 𝐴 ≤ 0 ∨ 1 ≤ 𝐴 ) ) | |
| 61 | 35 59 60 | mpjaod | ⊢ ( 𝐴 ∈ ℤ → ( ¬ 𝐴 = 1 → ¬ ( 2 · 𝐴 ) ∈ ℙ ) ) |
| 62 | 61 | con4d | ⊢ ( 𝐴 ∈ ℤ → ( ( 2 · 𝐴 ) ∈ ℙ → 𝐴 = 1 ) ) |
| 63 | oveq2 | ⊢ ( 𝐴 = 1 → ( 2 · 𝐴 ) = ( 2 · 1 ) ) | |
| 64 | 2t1e2 | ⊢ ( 2 · 1 ) = 2 | |
| 65 | 63 64 | eqtrdi | ⊢ ( 𝐴 = 1 → ( 2 · 𝐴 ) = 2 ) |
| 66 | 2prm | ⊢ 2 ∈ ℙ | |
| 67 | 65 66 | eqeltrdi | ⊢ ( 𝐴 = 1 → ( 2 · 𝐴 ) ∈ ℙ ) |
| 68 | 62 67 | impbid1 | ⊢ ( 𝐴 ∈ ℤ → ( ( 2 · 𝐴 ) ∈ ℙ ↔ 𝐴 = 1 ) ) |