This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is no integer in the open unit interval, i.e., an integer is either less than or equal to 0 or greater than or equal to 1 . (Contributed by AV, 4-Jun-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zle0orge1 | ⊢ ( 𝑍 ∈ ℤ → ( 𝑍 ≤ 0 ∨ 1 ≤ 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elznn | ⊢ ( 𝑍 ∈ ℤ ↔ ( 𝑍 ∈ ℝ ∧ ( 𝑍 ∈ ℕ ∨ - 𝑍 ∈ ℕ0 ) ) ) | |
| 2 | nnge1 | ⊢ ( 𝑍 ∈ ℕ → 1 ≤ 𝑍 ) | |
| 3 | 2 | a1i | ⊢ ( 𝑍 ∈ ℝ → ( 𝑍 ∈ ℕ → 1 ≤ 𝑍 ) ) |
| 4 | elnn0z | ⊢ ( - 𝑍 ∈ ℕ0 ↔ ( - 𝑍 ∈ ℤ ∧ 0 ≤ - 𝑍 ) ) | |
| 5 | le0neg1 | ⊢ ( 𝑍 ∈ ℝ → ( 𝑍 ≤ 0 ↔ 0 ≤ - 𝑍 ) ) | |
| 6 | 5 | biimprd | ⊢ ( 𝑍 ∈ ℝ → ( 0 ≤ - 𝑍 → 𝑍 ≤ 0 ) ) |
| 7 | 6 | adantld | ⊢ ( 𝑍 ∈ ℝ → ( ( - 𝑍 ∈ ℤ ∧ 0 ≤ - 𝑍 ) → 𝑍 ≤ 0 ) ) |
| 8 | 4 7 | biimtrid | ⊢ ( 𝑍 ∈ ℝ → ( - 𝑍 ∈ ℕ0 → 𝑍 ≤ 0 ) ) |
| 9 | 3 8 | orim12d | ⊢ ( 𝑍 ∈ ℝ → ( ( 𝑍 ∈ ℕ ∨ - 𝑍 ∈ ℕ0 ) → ( 1 ≤ 𝑍 ∨ 𝑍 ≤ 0 ) ) ) |
| 10 | 9 | imp | ⊢ ( ( 𝑍 ∈ ℝ ∧ ( 𝑍 ∈ ℕ ∨ - 𝑍 ∈ ℕ0 ) ) → ( 1 ≤ 𝑍 ∨ 𝑍 ≤ 0 ) ) |
| 11 | 10 | orcomd | ⊢ ( ( 𝑍 ∈ ℝ ∧ ( 𝑍 ∈ ℕ ∨ - 𝑍 ∈ ℕ0 ) ) → ( 𝑍 ≤ 0 ∨ 1 ≤ 𝑍 ) ) |
| 12 | 1 11 | sylbi | ⊢ ( 𝑍 ∈ ℤ → ( 𝑍 ≤ 0 ∨ 1 ≤ 𝑍 ) ) |