This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A multiple of two is prime iff the multiplier is one. (Contributed by AV, 8-Jun-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2mulprm | |- ( A e. ZZ -> ( ( 2 x. A ) e. Prime <-> A = 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre | |- ( A e. ZZ -> A e. RR ) |
|
| 2 | 0red | |- ( A e. ZZ -> 0 e. RR ) |
|
| 3 | 1 2 | leloed | |- ( A e. ZZ -> ( A <_ 0 <-> ( A < 0 \/ A = 0 ) ) ) |
| 4 | prmnn | |- ( ( 2 x. A ) e. Prime -> ( 2 x. A ) e. NN ) |
|
| 5 | nnnn0 | |- ( ( 2 x. A ) e. NN -> ( 2 x. A ) e. NN0 ) |
|
| 6 | nn0ge0 | |- ( ( 2 x. A ) e. NN0 -> 0 <_ ( 2 x. A ) ) |
|
| 7 | 2pos | |- 0 < 2 |
|
| 8 | 7 | a1i | |- ( A e. ZZ -> 0 < 2 ) |
| 9 | 8 | anim1i | |- ( ( A e. ZZ /\ A < 0 ) -> ( 0 < 2 /\ A < 0 ) ) |
| 10 | 9 | olcd | |- ( ( A e. ZZ /\ A < 0 ) -> ( ( 2 < 0 /\ 0 < A ) \/ ( 0 < 2 /\ A < 0 ) ) ) |
| 11 | 2re | |- 2 e. RR |
|
| 12 | 11 | a1i | |- ( ( A e. ZZ /\ A < 0 ) -> 2 e. RR ) |
| 13 | 1 | adantr | |- ( ( A e. ZZ /\ A < 0 ) -> A e. RR ) |
| 14 | 12 13 | mul2lt0bi | |- ( ( A e. ZZ /\ A < 0 ) -> ( ( 2 x. A ) < 0 <-> ( ( 2 < 0 /\ 0 < A ) \/ ( 0 < 2 /\ A < 0 ) ) ) ) |
| 15 | 10 14 | mpbird | |- ( ( A e. ZZ /\ A < 0 ) -> ( 2 x. A ) < 0 ) |
| 16 | 12 13 | remulcld | |- ( ( A e. ZZ /\ A < 0 ) -> ( 2 x. A ) e. RR ) |
| 17 | 0red | |- ( ( A e. ZZ /\ A < 0 ) -> 0 e. RR ) |
|
| 18 | 16 17 | ltnled | |- ( ( A e. ZZ /\ A < 0 ) -> ( ( 2 x. A ) < 0 <-> -. 0 <_ ( 2 x. A ) ) ) |
| 19 | 15 18 | mpbid | |- ( ( A e. ZZ /\ A < 0 ) -> -. 0 <_ ( 2 x. A ) ) |
| 20 | 19 | ex | |- ( A e. ZZ -> ( A < 0 -> -. 0 <_ ( 2 x. A ) ) ) |
| 21 | 20 | con2d | |- ( A e. ZZ -> ( 0 <_ ( 2 x. A ) -> -. A < 0 ) ) |
| 22 | 21 | com12 | |- ( 0 <_ ( 2 x. A ) -> ( A e. ZZ -> -. A < 0 ) ) |
| 23 | 4 5 6 22 | 4syl | |- ( ( 2 x. A ) e. Prime -> ( A e. ZZ -> -. A < 0 ) ) |
| 24 | 23 | com12 | |- ( A e. ZZ -> ( ( 2 x. A ) e. Prime -> -. A < 0 ) ) |
| 25 | 24 | con2d | |- ( A e. ZZ -> ( A < 0 -> -. ( 2 x. A ) e. Prime ) ) |
| 26 | 25 | a1dd | |- ( A e. ZZ -> ( A < 0 -> ( -. A = 1 -> -. ( 2 x. A ) e. Prime ) ) ) |
| 27 | oveq2 | |- ( A = 0 -> ( 2 x. A ) = ( 2 x. 0 ) ) |
|
| 28 | 2t0e0 | |- ( 2 x. 0 ) = 0 |
|
| 29 | 27 28 | eqtrdi | |- ( A = 0 -> ( 2 x. A ) = 0 ) |
| 30 | 0nprm | |- -. 0 e. Prime |
|
| 31 | 30 | a1i | |- ( A = 0 -> -. 0 e. Prime ) |
| 32 | 29 31 | eqneltrd | |- ( A = 0 -> -. ( 2 x. A ) e. Prime ) |
| 33 | 32 | a1i13 | |- ( A e. ZZ -> ( A = 0 -> ( -. A = 1 -> -. ( 2 x. A ) e. Prime ) ) ) |
| 34 | 26 33 | jaod | |- ( A e. ZZ -> ( ( A < 0 \/ A = 0 ) -> ( -. A = 1 -> -. ( 2 x. A ) e. Prime ) ) ) |
| 35 | 3 34 | sylbid | |- ( A e. ZZ -> ( A <_ 0 -> ( -. A = 1 -> -. ( 2 x. A ) e. Prime ) ) ) |
| 36 | 2z | |- 2 e. ZZ |
|
| 37 | uzid | |- ( 2 e. ZZ -> 2 e. ( ZZ>= ` 2 ) ) |
|
| 38 | 36 37 | ax-mp | |- 2 e. ( ZZ>= ` 2 ) |
| 39 | 36 | a1i | |- ( ( A e. ZZ /\ 1 <_ A /\ -. A = 1 ) -> 2 e. ZZ ) |
| 40 | simp1 | |- ( ( A e. ZZ /\ 1 <_ A /\ -. A = 1 ) -> A e. ZZ ) |
|
| 41 | df-ne | |- ( A =/= 1 <-> -. A = 1 ) |
|
| 42 | 1red | |- ( A e. ZZ -> 1 e. RR ) |
|
| 43 | 42 1 | ltlend | |- ( A e. ZZ -> ( 1 < A <-> ( 1 <_ A /\ A =/= 1 ) ) ) |
| 44 | 1zzd | |- ( A e. ZZ -> 1 e. ZZ ) |
|
| 45 | zltp1le | |- ( ( 1 e. ZZ /\ A e. ZZ ) -> ( 1 < A <-> ( 1 + 1 ) <_ A ) ) |
|
| 46 | 44 45 | mpancom | |- ( A e. ZZ -> ( 1 < A <-> ( 1 + 1 ) <_ A ) ) |
| 47 | 46 | biimpd | |- ( A e. ZZ -> ( 1 < A -> ( 1 + 1 ) <_ A ) ) |
| 48 | df-2 | |- 2 = ( 1 + 1 ) |
|
| 49 | 48 | breq1i | |- ( 2 <_ A <-> ( 1 + 1 ) <_ A ) |
| 50 | 47 49 | imbitrrdi | |- ( A e. ZZ -> ( 1 < A -> 2 <_ A ) ) |
| 51 | 43 50 | sylbird | |- ( A e. ZZ -> ( ( 1 <_ A /\ A =/= 1 ) -> 2 <_ A ) ) |
| 52 | 51 | expdimp | |- ( ( A e. ZZ /\ 1 <_ A ) -> ( A =/= 1 -> 2 <_ A ) ) |
| 53 | 41 52 | biimtrrid | |- ( ( A e. ZZ /\ 1 <_ A ) -> ( -. A = 1 -> 2 <_ A ) ) |
| 54 | 53 | 3impia | |- ( ( A e. ZZ /\ 1 <_ A /\ -. A = 1 ) -> 2 <_ A ) |
| 55 | eluz2 | |- ( A e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ A e. ZZ /\ 2 <_ A ) ) |
|
| 56 | 39 40 54 55 | syl3anbrc | |- ( ( A e. ZZ /\ 1 <_ A /\ -. A = 1 ) -> A e. ( ZZ>= ` 2 ) ) |
| 57 | nprm | |- ( ( 2 e. ( ZZ>= ` 2 ) /\ A e. ( ZZ>= ` 2 ) ) -> -. ( 2 x. A ) e. Prime ) |
|
| 58 | 38 56 57 | sylancr | |- ( ( A e. ZZ /\ 1 <_ A /\ -. A = 1 ) -> -. ( 2 x. A ) e. Prime ) |
| 59 | 58 | 3exp | |- ( A e. ZZ -> ( 1 <_ A -> ( -. A = 1 -> -. ( 2 x. A ) e. Prime ) ) ) |
| 60 | zle0orge1 | |- ( A e. ZZ -> ( A <_ 0 \/ 1 <_ A ) ) |
|
| 61 | 35 59 60 | mpjaod | |- ( A e. ZZ -> ( -. A = 1 -> -. ( 2 x. A ) e. Prime ) ) |
| 62 | 61 | con4d | |- ( A e. ZZ -> ( ( 2 x. A ) e. Prime -> A = 1 ) ) |
| 63 | oveq2 | |- ( A = 1 -> ( 2 x. A ) = ( 2 x. 1 ) ) |
|
| 64 | 2t1e2 | |- ( 2 x. 1 ) = 2 |
|
| 65 | 63 64 | eqtrdi | |- ( A = 1 -> ( 2 x. A ) = 2 ) |
| 66 | 2prm | |- 2 e. Prime |
|
| 67 | 65 66 | eqeltrdi | |- ( A = 1 -> ( 2 x. A ) e. Prime ) |
| 68 | 62 67 | impbid1 | |- ( A e. ZZ -> ( ( 2 x. A ) e. Prime <-> A = 1 ) ) |