This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A product of two integers greater than one is composite. (Contributed by Mario Carneiro, 20-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nprm | ⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → ¬ ( 𝐴 · 𝐵 ) ∈ ℙ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz | ⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 𝐴 ∈ ℤ ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → 𝐴 ∈ ℤ ) |
| 3 | 2 | zred | ⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → 𝐴 ∈ ℝ ) |
| 4 | eluz2gt1 | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) → 1 < 𝐵 ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → 1 < 𝐵 ) |
| 6 | eluzelz | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) → 𝐵 ∈ ℤ ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → 𝐵 ∈ ℤ ) |
| 8 | 7 | zred | ⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → 𝐵 ∈ ℝ ) |
| 9 | eluz2nn | ⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 𝐴 ∈ ℕ ) | |
| 10 | 9 | adantr | ⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → 𝐴 ∈ ℕ ) |
| 11 | 10 | nngt0d | ⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → 0 < 𝐴 ) |
| 12 | ltmulgt11 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 < 𝐵 ↔ 𝐴 < ( 𝐴 · 𝐵 ) ) ) | |
| 13 | 3 8 11 12 | syl3anc | ⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → ( 1 < 𝐵 ↔ 𝐴 < ( 𝐴 · 𝐵 ) ) ) |
| 14 | 5 13 | mpbid | ⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → 𝐴 < ( 𝐴 · 𝐵 ) ) |
| 15 | 3 14 | ltned | ⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → 𝐴 ≠ ( 𝐴 · 𝐵 ) ) |
| 16 | dvdsmul1 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐴 ∥ ( 𝐴 · 𝐵 ) ) | |
| 17 | 1 6 16 | syl2an | ⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → 𝐴 ∥ ( 𝐴 · 𝐵 ) ) |
| 18 | isprm4 | ⊢ ( ( 𝐴 · 𝐵 ) ∈ ℙ ↔ ( ( 𝐴 · 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ( 𝑥 ∥ ( 𝐴 · 𝐵 ) → 𝑥 = ( 𝐴 · 𝐵 ) ) ) ) | |
| 19 | 18 | simprbi | ⊢ ( ( 𝐴 · 𝐵 ) ∈ ℙ → ∀ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ( 𝑥 ∥ ( 𝐴 · 𝐵 ) → 𝑥 = ( 𝐴 · 𝐵 ) ) ) |
| 20 | breq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∥ ( 𝐴 · 𝐵 ) ↔ 𝐴 ∥ ( 𝐴 · 𝐵 ) ) ) | |
| 21 | eqeq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 = ( 𝐴 · 𝐵 ) ↔ 𝐴 = ( 𝐴 · 𝐵 ) ) ) | |
| 22 | 20 21 | imbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∥ ( 𝐴 · 𝐵 ) → 𝑥 = ( 𝐴 · 𝐵 ) ) ↔ ( 𝐴 ∥ ( 𝐴 · 𝐵 ) → 𝐴 = ( 𝐴 · 𝐵 ) ) ) ) |
| 23 | 22 | rspcv | ⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ∀ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ( 𝑥 ∥ ( 𝐴 · 𝐵 ) → 𝑥 = ( 𝐴 · 𝐵 ) ) → ( 𝐴 ∥ ( 𝐴 · 𝐵 ) → 𝐴 = ( 𝐴 · 𝐵 ) ) ) ) |
| 24 | 19 23 | syl5 | ⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐴 · 𝐵 ) ∈ ℙ → ( 𝐴 ∥ ( 𝐴 · 𝐵 ) → 𝐴 = ( 𝐴 · 𝐵 ) ) ) ) |
| 25 | 24 | adantr | ⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝐴 · 𝐵 ) ∈ ℙ → ( 𝐴 ∥ ( 𝐴 · 𝐵 ) → 𝐴 = ( 𝐴 · 𝐵 ) ) ) ) |
| 26 | 17 25 | mpid | ⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝐴 · 𝐵 ) ∈ ℙ → 𝐴 = ( 𝐴 · 𝐵 ) ) ) |
| 27 | 26 | necon3ad | ⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝐴 ≠ ( 𝐴 · 𝐵 ) → ¬ ( 𝐴 · 𝐵 ) ∈ ℙ ) ) |
| 28 | 15 27 | mpd | ⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → ¬ ( 𝐴 · 𝐵 ) ∈ ℙ ) |