This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 19-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mul2lt0.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| mul2lt0.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| Assertion | mul2lt0bi | ⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) < 0 ↔ ( ( 𝐴 < 0 ∧ 0 < 𝐵 ) ∨ ( 0 < 𝐴 ∧ 𝐵 < 0 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul2lt0.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | mul2lt0.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | 1 2 | remulcld | ⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) ∈ ℝ ) |
| 4 | 0red | ⊢ ( 𝜑 → 0 ∈ ℝ ) | |
| 5 | 3 4 | ltnled | ⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) < 0 ↔ ¬ 0 ≤ ( 𝐴 · 𝐵 ) ) ) |
| 6 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) → 𝐴 ∈ ℝ ) |
| 7 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) → 𝐵 ∈ ℝ ) |
| 8 | simprl | ⊢ ( ( 𝜑 ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) → 0 ≤ 𝐴 ) | |
| 9 | simprr | ⊢ ( ( 𝜑 ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) → 0 ≤ 𝐵 ) | |
| 10 | 6 7 8 9 | mulge0d | ⊢ ( ( 𝜑 ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) → 0 ≤ ( 𝐴 · 𝐵 ) ) |
| 11 | 10 | ex | ⊢ ( 𝜑 → ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) → 0 ≤ ( 𝐴 · 𝐵 ) ) ) |
| 12 | 11 | con3d | ⊢ ( 𝜑 → ( ¬ 0 ≤ ( 𝐴 · 𝐵 ) → ¬ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) ) |
| 13 | 5 12 | sylbid | ⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) < 0 → ¬ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) ) |
| 14 | ianor | ⊢ ( ¬ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ↔ ( ¬ 0 ≤ 𝐴 ∨ ¬ 0 ≤ 𝐵 ) ) | |
| 15 | 13 14 | imbitrdi | ⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) < 0 → ( ¬ 0 ≤ 𝐴 ∨ ¬ 0 ≤ 𝐵 ) ) ) |
| 16 | 1 4 | ltnled | ⊢ ( 𝜑 → ( 𝐴 < 0 ↔ ¬ 0 ≤ 𝐴 ) ) |
| 17 | 2 4 | ltnled | ⊢ ( 𝜑 → ( 𝐵 < 0 ↔ ¬ 0 ≤ 𝐵 ) ) |
| 18 | 16 17 | orbi12d | ⊢ ( 𝜑 → ( ( 𝐴 < 0 ∨ 𝐵 < 0 ) ↔ ( ¬ 0 ≤ 𝐴 ∨ ¬ 0 ≤ 𝐵 ) ) ) |
| 19 | 15 18 | sylibrd | ⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) < 0 → ( 𝐴 < 0 ∨ 𝐵 < 0 ) ) ) |
| 20 | 19 | imp | ⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → ( 𝐴 < 0 ∨ 𝐵 < 0 ) ) |
| 21 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) ∧ 𝐴 < 0 ) → 𝐴 < 0 ) | |
| 22 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → 𝐴 ∈ ℝ ) |
| 23 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → 𝐵 ∈ ℝ ) |
| 24 | simpr | ⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → ( 𝐴 · 𝐵 ) < 0 ) | |
| 25 | 22 23 24 | mul2lt0llt0 | ⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) ∧ 𝐴 < 0 ) → 0 < 𝐵 ) |
| 26 | 21 25 | jca | ⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) ∧ 𝐴 < 0 ) → ( 𝐴 < 0 ∧ 0 < 𝐵 ) ) |
| 27 | 26 | ex | ⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → ( 𝐴 < 0 → ( 𝐴 < 0 ∧ 0 < 𝐵 ) ) ) |
| 28 | 22 23 24 | mul2lt0rlt0 | ⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) ∧ 𝐵 < 0 ) → 0 < 𝐴 ) |
| 29 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) ∧ 𝐵 < 0 ) → 𝐵 < 0 ) | |
| 30 | 28 29 | jca | ⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) ∧ 𝐵 < 0 ) → ( 0 < 𝐴 ∧ 𝐵 < 0 ) ) |
| 31 | 30 | ex | ⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → ( 𝐵 < 0 → ( 0 < 𝐴 ∧ 𝐵 < 0 ) ) ) |
| 32 | 27 31 | orim12d | ⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → ( ( 𝐴 < 0 ∨ 𝐵 < 0 ) → ( ( 𝐴 < 0 ∧ 0 < 𝐵 ) ∨ ( 0 < 𝐴 ∧ 𝐵 < 0 ) ) ) ) |
| 33 | 20 32 | mpd | ⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → ( ( 𝐴 < 0 ∧ 0 < 𝐵 ) ∨ ( 0 < 𝐴 ∧ 𝐵 < 0 ) ) ) |
| 34 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 < 0 ∧ 0 < 𝐵 ) ) → 𝐴 ∈ ℝ ) |
| 35 | 0red | ⊢ ( ( 𝜑 ∧ ( 𝐴 < 0 ∧ 0 < 𝐵 ) ) → 0 ∈ ℝ ) | |
| 36 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 < 0 ∧ 0 < 𝐵 ) ) → 𝐵 ∈ ℝ ) |
| 37 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝐴 < 0 ∧ 0 < 𝐵 ) ) → 0 < 𝐵 ) | |
| 38 | 36 37 | elrpd | ⊢ ( ( 𝜑 ∧ ( 𝐴 < 0 ∧ 0 < 𝐵 ) ) → 𝐵 ∈ ℝ+ ) |
| 39 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝐴 < 0 ∧ 0 < 𝐵 ) ) → 𝐴 < 0 ) | |
| 40 | 34 35 38 39 | ltmul1dd | ⊢ ( ( 𝜑 ∧ ( 𝐴 < 0 ∧ 0 < 𝐵 ) ) → ( 𝐴 · 𝐵 ) < ( 0 · 𝐵 ) ) |
| 41 | 36 | recnd | ⊢ ( ( 𝜑 ∧ ( 𝐴 < 0 ∧ 0 < 𝐵 ) ) → 𝐵 ∈ ℂ ) |
| 42 | 41 | mul02d | ⊢ ( ( 𝜑 ∧ ( 𝐴 < 0 ∧ 0 < 𝐵 ) ) → ( 0 · 𝐵 ) = 0 ) |
| 43 | 40 42 | breqtrd | ⊢ ( ( 𝜑 ∧ ( 𝐴 < 0 ∧ 0 < 𝐵 ) ) → ( 𝐴 · 𝐵 ) < 0 ) |
| 44 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 0 < 𝐴 ∧ 𝐵 < 0 ) ) → 𝐵 ∈ ℝ ) |
| 45 | 0red | ⊢ ( ( 𝜑 ∧ ( 0 < 𝐴 ∧ 𝐵 < 0 ) ) → 0 ∈ ℝ ) | |
| 46 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 0 < 𝐴 ∧ 𝐵 < 0 ) ) → 𝐴 ∈ ℝ ) |
| 47 | simprl | ⊢ ( ( 𝜑 ∧ ( 0 < 𝐴 ∧ 𝐵 < 0 ) ) → 0 < 𝐴 ) | |
| 48 | 46 47 | elrpd | ⊢ ( ( 𝜑 ∧ ( 0 < 𝐴 ∧ 𝐵 < 0 ) ) → 𝐴 ∈ ℝ+ ) |
| 49 | simprr | ⊢ ( ( 𝜑 ∧ ( 0 < 𝐴 ∧ 𝐵 < 0 ) ) → 𝐵 < 0 ) | |
| 50 | 44 45 48 49 | ltmul2dd | ⊢ ( ( 𝜑 ∧ ( 0 < 𝐴 ∧ 𝐵 < 0 ) ) → ( 𝐴 · 𝐵 ) < ( 𝐴 · 0 ) ) |
| 51 | 46 | recnd | ⊢ ( ( 𝜑 ∧ ( 0 < 𝐴 ∧ 𝐵 < 0 ) ) → 𝐴 ∈ ℂ ) |
| 52 | 51 | mul01d | ⊢ ( ( 𝜑 ∧ ( 0 < 𝐴 ∧ 𝐵 < 0 ) ) → ( 𝐴 · 0 ) = 0 ) |
| 53 | 50 52 | breqtrd | ⊢ ( ( 𝜑 ∧ ( 0 < 𝐴 ∧ 𝐵 < 0 ) ) → ( 𝐴 · 𝐵 ) < 0 ) |
| 54 | 43 53 | jaodan | ⊢ ( ( 𝜑 ∧ ( ( 𝐴 < 0 ∧ 0 < 𝐵 ) ∨ ( 0 < 𝐴 ∧ 𝐵 < 0 ) ) ) → ( 𝐴 · 𝐵 ) < 0 ) |
| 55 | 33 54 | impbida | ⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) < 0 ↔ ( ( 𝐴 < 0 ∧ 0 < 𝐵 ) ∨ ( 0 < 𝐴 ∧ 𝐵 < 0 ) ) ) ) |