This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A ring is a zero ring iff it is not a nonzero ring. (Contributed by AV, 14-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0ringnnzr | ⊢ ( 𝑅 ∈ Ring → ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 ↔ ¬ 𝑅 ∈ NzRing ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re | ⊢ 1 ∈ ℝ | |
| 2 | 1 | ltnri | ⊢ ¬ 1 < 1 |
| 3 | breq2 | ⊢ ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 → ( 1 < ( ♯ ‘ ( Base ‘ 𝑅 ) ) ↔ 1 < 1 ) ) | |
| 4 | 2 3 | mtbiri | ⊢ ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 → ¬ 1 < ( ♯ ‘ ( Base ‘ 𝑅 ) ) ) |
| 5 | 4 | adantl | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 ) → ¬ 1 < ( ♯ ‘ ( Base ‘ 𝑅 ) ) ) |
| 6 | 5 | intnand | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 ) → ¬ ( 𝑅 ∈ Ring ∧ 1 < ( ♯ ‘ ( Base ‘ 𝑅 ) ) ) ) |
| 7 | 6 | ex | ⊢ ( 𝑅 ∈ Ring → ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 → ¬ ( 𝑅 ∈ Ring ∧ 1 < ( ♯ ‘ ( Base ‘ 𝑅 ) ) ) ) ) |
| 8 | ianor | ⊢ ( ¬ ( 𝑅 ∈ Ring ∧ 1 < ( ♯ ‘ ( Base ‘ 𝑅 ) ) ) ↔ ( ¬ 𝑅 ∈ Ring ∨ ¬ 1 < ( ♯ ‘ ( Base ‘ 𝑅 ) ) ) ) | |
| 9 | pm2.21 | ⊢ ( ¬ 𝑅 ∈ Ring → ( 𝑅 ∈ Ring → ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 ) ) | |
| 10 | fvex | ⊢ ( Base ‘ 𝑅 ) ∈ V | |
| 11 | hashxrcl | ⊢ ( ( Base ‘ 𝑅 ) ∈ V → ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℝ* ) | |
| 12 | 10 11 | ax-mp | ⊢ ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℝ* |
| 13 | 1xr | ⊢ 1 ∈ ℝ* | |
| 14 | xrlenlt | ⊢ ( ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℝ* ∧ 1 ∈ ℝ* ) → ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) ≤ 1 ↔ ¬ 1 < ( ♯ ‘ ( Base ‘ 𝑅 ) ) ) ) | |
| 15 | 12 13 14 | mp2an | ⊢ ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) ≤ 1 ↔ ¬ 1 < ( ♯ ‘ ( Base ‘ 𝑅 ) ) ) |
| 16 | 15 | bicomi | ⊢ ( ¬ 1 < ( ♯ ‘ ( Base ‘ 𝑅 ) ) ↔ ( ♯ ‘ ( Base ‘ 𝑅 ) ) ≤ 1 ) |
| 17 | simpr | ⊢ ( ( ( Base ‘ 𝑅 ) ≠ ∅ ∧ ( ♯ ‘ ( Base ‘ 𝑅 ) ) ≤ 1 ) → ( ♯ ‘ ( Base ‘ 𝑅 ) ) ≤ 1 ) | |
| 18 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 19 | hashbnd | ⊢ ( ( ( Base ‘ 𝑅 ) ∈ V ∧ 1 ∈ ℕ0 ∧ ( ♯ ‘ ( Base ‘ 𝑅 ) ) ≤ 1 ) → ( Base ‘ 𝑅 ) ∈ Fin ) | |
| 20 | 10 18 17 19 | mp3an12i | ⊢ ( ( ( Base ‘ 𝑅 ) ≠ ∅ ∧ ( ♯ ‘ ( Base ‘ 𝑅 ) ) ≤ 1 ) → ( Base ‘ 𝑅 ) ∈ Fin ) |
| 21 | hashcl | ⊢ ( ( Base ‘ 𝑅 ) ∈ Fin → ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℕ0 ) | |
| 22 | simpr | ⊢ ( ( ( Base ‘ 𝑅 ) ≠ ∅ ∧ ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℕ0 ) → ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℕ0 ) | |
| 23 | hasheq0 | ⊢ ( ( Base ‘ 𝑅 ) ∈ V → ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 0 ↔ ( Base ‘ 𝑅 ) = ∅ ) ) | |
| 24 | 10 23 | mp1i | ⊢ ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℕ0 → ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 0 ↔ ( Base ‘ 𝑅 ) = ∅ ) ) |
| 25 | 24 | biimpd | ⊢ ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℕ0 → ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 0 → ( Base ‘ 𝑅 ) = ∅ ) ) |
| 26 | 25 | necon3d | ⊢ ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℕ0 → ( ( Base ‘ 𝑅 ) ≠ ∅ → ( ♯ ‘ ( Base ‘ 𝑅 ) ) ≠ 0 ) ) |
| 27 | 26 | impcom | ⊢ ( ( ( Base ‘ 𝑅 ) ≠ ∅ ∧ ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℕ0 ) → ( ♯ ‘ ( Base ‘ 𝑅 ) ) ≠ 0 ) |
| 28 | elnnne0 | ⊢ ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℕ ↔ ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℕ0 ∧ ( ♯ ‘ ( Base ‘ 𝑅 ) ) ≠ 0 ) ) | |
| 29 | 22 27 28 | sylanbrc | ⊢ ( ( ( Base ‘ 𝑅 ) ≠ ∅ ∧ ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℕ0 ) → ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℕ ) |
| 30 | 29 | ex | ⊢ ( ( Base ‘ 𝑅 ) ≠ ∅ → ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℕ0 → ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℕ ) ) |
| 31 | 30 | adantr | ⊢ ( ( ( Base ‘ 𝑅 ) ≠ ∅ ∧ ( ♯ ‘ ( Base ‘ 𝑅 ) ) ≤ 1 ) → ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℕ0 → ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℕ ) ) |
| 32 | 21 31 | syl5com | ⊢ ( ( Base ‘ 𝑅 ) ∈ Fin → ( ( ( Base ‘ 𝑅 ) ≠ ∅ ∧ ( ♯ ‘ ( Base ‘ 𝑅 ) ) ≤ 1 ) → ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℕ ) ) |
| 33 | 20 32 | mpcom | ⊢ ( ( ( Base ‘ 𝑅 ) ≠ ∅ ∧ ( ♯ ‘ ( Base ‘ 𝑅 ) ) ≤ 1 ) → ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℕ ) |
| 34 | nnle1eq1 | ⊢ ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℕ → ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) ≤ 1 ↔ ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 ) ) | |
| 35 | 33 34 | syl | ⊢ ( ( ( Base ‘ 𝑅 ) ≠ ∅ ∧ ( ♯ ‘ ( Base ‘ 𝑅 ) ) ≤ 1 ) → ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) ≤ 1 ↔ ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 ) ) |
| 36 | 17 35 | mpbid | ⊢ ( ( ( Base ‘ 𝑅 ) ≠ ∅ ∧ ( ♯ ‘ ( Base ‘ 𝑅 ) ) ≤ 1 ) → ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 ) |
| 37 | 36 | ex | ⊢ ( ( Base ‘ 𝑅 ) ≠ ∅ → ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) ≤ 1 → ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 ) ) |
| 38 | ringgrp | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) | |
| 39 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 40 | 39 | grpbn0 | ⊢ ( 𝑅 ∈ Grp → ( Base ‘ 𝑅 ) ≠ ∅ ) |
| 41 | 38 40 | syl | ⊢ ( 𝑅 ∈ Ring → ( Base ‘ 𝑅 ) ≠ ∅ ) |
| 42 | 37 41 | syl11 | ⊢ ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) ≤ 1 → ( 𝑅 ∈ Ring → ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 ) ) |
| 43 | 16 42 | sylbi | ⊢ ( ¬ 1 < ( ♯ ‘ ( Base ‘ 𝑅 ) ) → ( 𝑅 ∈ Ring → ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 ) ) |
| 44 | 9 43 | jaoi | ⊢ ( ( ¬ 𝑅 ∈ Ring ∨ ¬ 1 < ( ♯ ‘ ( Base ‘ 𝑅 ) ) ) → ( 𝑅 ∈ Ring → ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 ) ) |
| 45 | 8 44 | sylbi | ⊢ ( ¬ ( 𝑅 ∈ Ring ∧ 1 < ( ♯ ‘ ( Base ‘ 𝑅 ) ) ) → ( 𝑅 ∈ Ring → ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 ) ) |
| 46 | 45 | com12 | ⊢ ( 𝑅 ∈ Ring → ( ¬ ( 𝑅 ∈ Ring ∧ 1 < ( ♯ ‘ ( Base ‘ 𝑅 ) ) ) → ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 ) ) |
| 47 | 7 46 | impbid | ⊢ ( 𝑅 ∈ Ring → ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 ↔ ¬ ( 𝑅 ∈ Ring ∧ 1 < ( ♯ ‘ ( Base ‘ 𝑅 ) ) ) ) ) |
| 48 | 39 | isnzr2hash | ⊢ ( 𝑅 ∈ NzRing ↔ ( 𝑅 ∈ Ring ∧ 1 < ( ♯ ‘ ( Base ‘ 𝑅 ) ) ) ) |
| 49 | 48 | bicomi | ⊢ ( ( 𝑅 ∈ Ring ∧ 1 < ( ♯ ‘ ( Base ‘ 𝑅 ) ) ) ↔ 𝑅 ∈ NzRing ) |
| 50 | 49 | notbii | ⊢ ( ¬ ( 𝑅 ∈ Ring ∧ 1 < ( ♯ ‘ ( Base ‘ 𝑅 ) ) ) ↔ ¬ 𝑅 ∈ NzRing ) |
| 51 | 47 50 | bitrdi | ⊢ ( 𝑅 ∈ Ring → ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 ↔ ¬ 𝑅 ∈ NzRing ) ) |