This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If A has size bounded by an integer B , then A is finite. (Contributed by Mario Carneiro, 14-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashbnd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ℕ0 ∧ ( ♯ ‘ 𝐴 ) ≤ 𝐵 ) → 𝐴 ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re | ⊢ ( 𝐵 ∈ ℕ0 → 𝐵 ∈ ℝ ) | |
| 2 | ltpnf | ⊢ ( 𝐵 ∈ ℝ → 𝐵 < +∞ ) | |
| 3 | rexr | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ* ) | |
| 4 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 5 | xrltnle | ⊢ ( ( 𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝐵 < +∞ ↔ ¬ +∞ ≤ 𝐵 ) ) | |
| 6 | 3 4 5 | sylancl | ⊢ ( 𝐵 ∈ ℝ → ( 𝐵 < +∞ ↔ ¬ +∞ ≤ 𝐵 ) ) |
| 7 | 2 6 | mpbid | ⊢ ( 𝐵 ∈ ℝ → ¬ +∞ ≤ 𝐵 ) |
| 8 | 1 7 | syl | ⊢ ( 𝐵 ∈ ℕ0 → ¬ +∞ ≤ 𝐵 ) |
| 9 | hashinf | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ( ♯ ‘ 𝐴 ) = +∞ ) | |
| 10 | 9 | breq1d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) ≤ 𝐵 ↔ +∞ ≤ 𝐵 ) ) |
| 11 | 10 | notbid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ( ¬ ( ♯ ‘ 𝐴 ) ≤ 𝐵 ↔ ¬ +∞ ≤ 𝐵 ) ) |
| 12 | 8 11 | syl5ibrcom | ⊢ ( 𝐵 ∈ ℕ0 → ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ¬ ( ♯ ‘ 𝐴 ) ≤ 𝐵 ) ) |
| 13 | 12 | expdimp | ⊢ ( ( 𝐵 ∈ ℕ0 ∧ 𝐴 ∈ 𝑉 ) → ( ¬ 𝐴 ∈ Fin → ¬ ( ♯ ‘ 𝐴 ) ≤ 𝐵 ) ) |
| 14 | 13 | ancoms | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ℕ0 ) → ( ¬ 𝐴 ∈ Fin → ¬ ( ♯ ‘ 𝐴 ) ≤ 𝐵 ) ) |
| 15 | 14 | con4d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ℕ0 ) → ( ( ♯ ‘ 𝐴 ) ≤ 𝐵 → 𝐴 ∈ Fin ) ) |
| 16 | 15 | 3impia | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ℕ0 ∧ ( ♯ ‘ 𝐴 ) ≤ 𝐵 ) → 𝐴 ∈ Fin ) |