This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A ring is a zero ring iff it is not a nonzero ring. (Contributed by AV, 14-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0ringnnzr | |- ( R e. Ring -> ( ( # ` ( Base ` R ) ) = 1 <-> -. R e. NzRing ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re | |- 1 e. RR |
|
| 2 | 1 | ltnri | |- -. 1 < 1 |
| 3 | breq2 | |- ( ( # ` ( Base ` R ) ) = 1 -> ( 1 < ( # ` ( Base ` R ) ) <-> 1 < 1 ) ) |
|
| 4 | 2 3 | mtbiri | |- ( ( # ` ( Base ` R ) ) = 1 -> -. 1 < ( # ` ( Base ` R ) ) ) |
| 5 | 4 | adantl | |- ( ( R e. Ring /\ ( # ` ( Base ` R ) ) = 1 ) -> -. 1 < ( # ` ( Base ` R ) ) ) |
| 6 | 5 | intnand | |- ( ( R e. Ring /\ ( # ` ( Base ` R ) ) = 1 ) -> -. ( R e. Ring /\ 1 < ( # ` ( Base ` R ) ) ) ) |
| 7 | 6 | ex | |- ( R e. Ring -> ( ( # ` ( Base ` R ) ) = 1 -> -. ( R e. Ring /\ 1 < ( # ` ( Base ` R ) ) ) ) ) |
| 8 | ianor | |- ( -. ( R e. Ring /\ 1 < ( # ` ( Base ` R ) ) ) <-> ( -. R e. Ring \/ -. 1 < ( # ` ( Base ` R ) ) ) ) |
|
| 9 | pm2.21 | |- ( -. R e. Ring -> ( R e. Ring -> ( # ` ( Base ` R ) ) = 1 ) ) |
|
| 10 | fvex | |- ( Base ` R ) e. _V |
|
| 11 | hashxrcl | |- ( ( Base ` R ) e. _V -> ( # ` ( Base ` R ) ) e. RR* ) |
|
| 12 | 10 11 | ax-mp | |- ( # ` ( Base ` R ) ) e. RR* |
| 13 | 1xr | |- 1 e. RR* |
|
| 14 | xrlenlt | |- ( ( ( # ` ( Base ` R ) ) e. RR* /\ 1 e. RR* ) -> ( ( # ` ( Base ` R ) ) <_ 1 <-> -. 1 < ( # ` ( Base ` R ) ) ) ) |
|
| 15 | 12 13 14 | mp2an | |- ( ( # ` ( Base ` R ) ) <_ 1 <-> -. 1 < ( # ` ( Base ` R ) ) ) |
| 16 | 15 | bicomi | |- ( -. 1 < ( # ` ( Base ` R ) ) <-> ( # ` ( Base ` R ) ) <_ 1 ) |
| 17 | simpr | |- ( ( ( Base ` R ) =/= (/) /\ ( # ` ( Base ` R ) ) <_ 1 ) -> ( # ` ( Base ` R ) ) <_ 1 ) |
|
| 18 | 1nn0 | |- 1 e. NN0 |
|
| 19 | hashbnd | |- ( ( ( Base ` R ) e. _V /\ 1 e. NN0 /\ ( # ` ( Base ` R ) ) <_ 1 ) -> ( Base ` R ) e. Fin ) |
|
| 20 | 10 18 17 19 | mp3an12i | |- ( ( ( Base ` R ) =/= (/) /\ ( # ` ( Base ` R ) ) <_ 1 ) -> ( Base ` R ) e. Fin ) |
| 21 | hashcl | |- ( ( Base ` R ) e. Fin -> ( # ` ( Base ` R ) ) e. NN0 ) |
|
| 22 | simpr | |- ( ( ( Base ` R ) =/= (/) /\ ( # ` ( Base ` R ) ) e. NN0 ) -> ( # ` ( Base ` R ) ) e. NN0 ) |
|
| 23 | hasheq0 | |- ( ( Base ` R ) e. _V -> ( ( # ` ( Base ` R ) ) = 0 <-> ( Base ` R ) = (/) ) ) |
|
| 24 | 10 23 | mp1i | |- ( ( # ` ( Base ` R ) ) e. NN0 -> ( ( # ` ( Base ` R ) ) = 0 <-> ( Base ` R ) = (/) ) ) |
| 25 | 24 | biimpd | |- ( ( # ` ( Base ` R ) ) e. NN0 -> ( ( # ` ( Base ` R ) ) = 0 -> ( Base ` R ) = (/) ) ) |
| 26 | 25 | necon3d | |- ( ( # ` ( Base ` R ) ) e. NN0 -> ( ( Base ` R ) =/= (/) -> ( # ` ( Base ` R ) ) =/= 0 ) ) |
| 27 | 26 | impcom | |- ( ( ( Base ` R ) =/= (/) /\ ( # ` ( Base ` R ) ) e. NN0 ) -> ( # ` ( Base ` R ) ) =/= 0 ) |
| 28 | elnnne0 | |- ( ( # ` ( Base ` R ) ) e. NN <-> ( ( # ` ( Base ` R ) ) e. NN0 /\ ( # ` ( Base ` R ) ) =/= 0 ) ) |
|
| 29 | 22 27 28 | sylanbrc | |- ( ( ( Base ` R ) =/= (/) /\ ( # ` ( Base ` R ) ) e. NN0 ) -> ( # ` ( Base ` R ) ) e. NN ) |
| 30 | 29 | ex | |- ( ( Base ` R ) =/= (/) -> ( ( # ` ( Base ` R ) ) e. NN0 -> ( # ` ( Base ` R ) ) e. NN ) ) |
| 31 | 30 | adantr | |- ( ( ( Base ` R ) =/= (/) /\ ( # ` ( Base ` R ) ) <_ 1 ) -> ( ( # ` ( Base ` R ) ) e. NN0 -> ( # ` ( Base ` R ) ) e. NN ) ) |
| 32 | 21 31 | syl5com | |- ( ( Base ` R ) e. Fin -> ( ( ( Base ` R ) =/= (/) /\ ( # ` ( Base ` R ) ) <_ 1 ) -> ( # ` ( Base ` R ) ) e. NN ) ) |
| 33 | 20 32 | mpcom | |- ( ( ( Base ` R ) =/= (/) /\ ( # ` ( Base ` R ) ) <_ 1 ) -> ( # ` ( Base ` R ) ) e. NN ) |
| 34 | nnle1eq1 | |- ( ( # ` ( Base ` R ) ) e. NN -> ( ( # ` ( Base ` R ) ) <_ 1 <-> ( # ` ( Base ` R ) ) = 1 ) ) |
|
| 35 | 33 34 | syl | |- ( ( ( Base ` R ) =/= (/) /\ ( # ` ( Base ` R ) ) <_ 1 ) -> ( ( # ` ( Base ` R ) ) <_ 1 <-> ( # ` ( Base ` R ) ) = 1 ) ) |
| 36 | 17 35 | mpbid | |- ( ( ( Base ` R ) =/= (/) /\ ( # ` ( Base ` R ) ) <_ 1 ) -> ( # ` ( Base ` R ) ) = 1 ) |
| 37 | 36 | ex | |- ( ( Base ` R ) =/= (/) -> ( ( # ` ( Base ` R ) ) <_ 1 -> ( # ` ( Base ` R ) ) = 1 ) ) |
| 38 | ringgrp | |- ( R e. Ring -> R e. Grp ) |
|
| 39 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 40 | 39 | grpbn0 | |- ( R e. Grp -> ( Base ` R ) =/= (/) ) |
| 41 | 38 40 | syl | |- ( R e. Ring -> ( Base ` R ) =/= (/) ) |
| 42 | 37 41 | syl11 | |- ( ( # ` ( Base ` R ) ) <_ 1 -> ( R e. Ring -> ( # ` ( Base ` R ) ) = 1 ) ) |
| 43 | 16 42 | sylbi | |- ( -. 1 < ( # ` ( Base ` R ) ) -> ( R e. Ring -> ( # ` ( Base ` R ) ) = 1 ) ) |
| 44 | 9 43 | jaoi | |- ( ( -. R e. Ring \/ -. 1 < ( # ` ( Base ` R ) ) ) -> ( R e. Ring -> ( # ` ( Base ` R ) ) = 1 ) ) |
| 45 | 8 44 | sylbi | |- ( -. ( R e. Ring /\ 1 < ( # ` ( Base ` R ) ) ) -> ( R e. Ring -> ( # ` ( Base ` R ) ) = 1 ) ) |
| 46 | 45 | com12 | |- ( R e. Ring -> ( -. ( R e. Ring /\ 1 < ( # ` ( Base ` R ) ) ) -> ( # ` ( Base ` R ) ) = 1 ) ) |
| 47 | 7 46 | impbid | |- ( R e. Ring -> ( ( # ` ( Base ` R ) ) = 1 <-> -. ( R e. Ring /\ 1 < ( # ` ( Base ` R ) ) ) ) ) |
| 48 | 39 | isnzr2hash | |- ( R e. NzRing <-> ( R e. Ring /\ 1 < ( # ` ( Base ` R ) ) ) ) |
| 49 | 48 | bicomi | |- ( ( R e. Ring /\ 1 < ( # ` ( Base ` R ) ) ) <-> R e. NzRing ) |
| 50 | 49 | notbii | |- ( -. ( R e. Ring /\ 1 < ( # ` ( Base ` R ) ) ) <-> -. R e. NzRing ) |
| 51 | 47 50 | bitrdi | |- ( R e. Ring -> ( ( # ` ( Base ` R ) ) = 1 <-> -. R e. NzRing ) ) |