This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalent characterization of nonzero rings: they have at least two elements. Analogous to isnzr2 . (Contributed by AV, 14-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | isnzr2hash.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| Assertion | isnzr2hash | ⊢ ( 𝑅 ∈ NzRing ↔ ( 𝑅 ∈ Ring ∧ 1 < ( ♯ ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnzr2hash.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 4 | 2 3 | isnzr | ⊢ ( 𝑅 ∈ NzRing ↔ ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) ) |
| 5 | 1 2 | ringidcl | ⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 6 | 1 3 | ring0cl | ⊢ ( 𝑅 ∈ Ring → ( 0g ‘ 𝑅 ) ∈ 𝐵 ) |
| 7 | 1xr | ⊢ 1 ∈ ℝ* | |
| 8 | 7 | a1i | ⊢ ( ( ( ( 1r ‘ 𝑅 ) ∈ 𝐵 ∧ ( 0g ‘ 𝑅 ) ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → 1 ∈ ℝ* ) |
| 9 | prex | ⊢ { ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) } ∈ V | |
| 10 | hashxrcl | ⊢ ( { ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) } ∈ V → ( ♯ ‘ { ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) } ) ∈ ℝ* ) | |
| 11 | 9 10 | mp1i | ⊢ ( ( ( ( 1r ‘ 𝑅 ) ∈ 𝐵 ∧ ( 0g ‘ 𝑅 ) ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → ( ♯ ‘ { ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) } ) ∈ ℝ* ) |
| 12 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 13 | hashxrcl | ⊢ ( 𝐵 ∈ V → ( ♯ ‘ 𝐵 ) ∈ ℝ* ) | |
| 14 | 12 13 | mp1i | ⊢ ( ( ( ( 1r ‘ 𝑅 ) ∈ 𝐵 ∧ ( 0g ‘ 𝑅 ) ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → ( ♯ ‘ 𝐵 ) ∈ ℝ* ) |
| 15 | 1lt2 | ⊢ 1 < 2 | |
| 16 | hashprg | ⊢ ( ( ( 1r ‘ 𝑅 ) ∈ 𝐵 ∧ ( 0g ‘ 𝑅 ) ∈ 𝐵 ) → ( ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ↔ ( ♯ ‘ { ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) } ) = 2 ) ) | |
| 17 | 16 | biimpa | ⊢ ( ( ( ( 1r ‘ 𝑅 ) ∈ 𝐵 ∧ ( 0g ‘ 𝑅 ) ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → ( ♯ ‘ { ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) } ) = 2 ) |
| 18 | 15 17 | breqtrrid | ⊢ ( ( ( ( 1r ‘ 𝑅 ) ∈ 𝐵 ∧ ( 0g ‘ 𝑅 ) ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → 1 < ( ♯ ‘ { ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) } ) ) |
| 19 | simpl | ⊢ ( ( ( ( 1r ‘ 𝑅 ) ∈ 𝐵 ∧ ( 0g ‘ 𝑅 ) ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) ∈ 𝐵 ∧ ( 0g ‘ 𝑅 ) ∈ 𝐵 ) ) | |
| 20 | fvex | ⊢ ( 1r ‘ 𝑅 ) ∈ V | |
| 21 | fvex | ⊢ ( 0g ‘ 𝑅 ) ∈ V | |
| 22 | 20 21 | prss | ⊢ ( ( ( 1r ‘ 𝑅 ) ∈ 𝐵 ∧ ( 0g ‘ 𝑅 ) ∈ 𝐵 ) ↔ { ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) } ⊆ 𝐵 ) |
| 23 | 19 22 | sylib | ⊢ ( ( ( ( 1r ‘ 𝑅 ) ∈ 𝐵 ∧ ( 0g ‘ 𝑅 ) ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → { ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) } ⊆ 𝐵 ) |
| 24 | hashss | ⊢ ( ( 𝐵 ∈ V ∧ { ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) } ⊆ 𝐵 ) → ( ♯ ‘ { ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) } ) ≤ ( ♯ ‘ 𝐵 ) ) | |
| 25 | 12 23 24 | sylancr | ⊢ ( ( ( ( 1r ‘ 𝑅 ) ∈ 𝐵 ∧ ( 0g ‘ 𝑅 ) ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → ( ♯ ‘ { ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) } ) ≤ ( ♯ ‘ 𝐵 ) ) |
| 26 | 8 11 14 18 25 | xrltletrd | ⊢ ( ( ( ( 1r ‘ 𝑅 ) ∈ 𝐵 ∧ ( 0g ‘ 𝑅 ) ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → 1 < ( ♯ ‘ 𝐵 ) ) |
| 27 | 26 | ex | ⊢ ( ( ( 1r ‘ 𝑅 ) ∈ 𝐵 ∧ ( 0g ‘ 𝑅 ) ∈ 𝐵 ) → ( ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) → 1 < ( ♯ ‘ 𝐵 ) ) ) |
| 28 | 5 6 27 | syl2anc | ⊢ ( 𝑅 ∈ Ring → ( ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) → 1 < ( ♯ ‘ 𝐵 ) ) ) |
| 29 | 28 | imdistani | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → ( 𝑅 ∈ Ring ∧ 1 < ( ♯ ‘ 𝐵 ) ) ) |
| 30 | simpl | ⊢ ( ( 𝑅 ∈ Ring ∧ 1 < ( ♯ ‘ 𝐵 ) ) → 𝑅 ∈ Ring ) | |
| 31 | 1 2 3 | ring1ne0 | ⊢ ( ( 𝑅 ∈ Ring ∧ 1 < ( ♯ ‘ 𝐵 ) ) → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) |
| 32 | 30 31 | jca | ⊢ ( ( 𝑅 ∈ Ring ∧ 1 < ( ♯ ‘ 𝐵 ) ) → ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) ) |
| 33 | 29 32 | impbii | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) ↔ ( 𝑅 ∈ Ring ∧ 1 < ( ♯ ‘ 𝐵 ) ) ) |
| 34 | 4 33 | bitri | ⊢ ( 𝑅 ∈ NzRing ↔ ( 𝑅 ∈ Ring ∧ 1 < ( ♯ ‘ 𝐵 ) ) ) |