This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Series sum with index set a subset of the upper integers. (Contributed by Mario Carneiro, 13-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zsum.1 | |- Z = ( ZZ>= ` M ) |
|
| zsum.2 | |- ( ph -> M e. ZZ ) |
||
| zsum.3 | |- ( ph -> A C_ Z ) |
||
| zsum.4 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = if ( k e. A , B , 0 ) ) |
||
| zsum.5 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
||
| Assertion | zsum | |- ( ph -> sum_ k e. A B = ( ~~> ` seq M ( + , F ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zsum.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | zsum.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | zsum.3 | |- ( ph -> A C_ Z ) |
|
| 4 | zsum.4 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = if ( k e. A , B , 0 ) ) |
|
| 5 | zsum.5 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
|
| 6 | eleq1w | |- ( n = i -> ( n e. A <-> i e. A ) ) |
|
| 7 | csbeq1 | |- ( n = i -> [_ n / k ]_ B = [_ i / k ]_ B ) |
|
| 8 | 6 7 | ifbieq1d | |- ( n = i -> if ( n e. A , [_ n / k ]_ B , 0 ) = if ( i e. A , [_ i / k ]_ B , 0 ) ) |
| 9 | 8 | cbvmptv | |- ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) = ( i e. ZZ |-> if ( i e. A , [_ i / k ]_ B , 0 ) ) |
| 10 | simpll | |- ( ( ( ph /\ m e. ZZ ) /\ A C_ ( ZZ>= ` m ) ) -> ph ) |
|
| 11 | 5 | ralrimiva | |- ( ph -> A. k e. A B e. CC ) |
| 12 | nfcsb1v | |- F/_ k [_ i / k ]_ B |
|
| 13 | 12 | nfel1 | |- F/ k [_ i / k ]_ B e. CC |
| 14 | csbeq1a | |- ( k = i -> B = [_ i / k ]_ B ) |
|
| 15 | 14 | eleq1d | |- ( k = i -> ( B e. CC <-> [_ i / k ]_ B e. CC ) ) |
| 16 | 13 15 | rspc | |- ( i e. A -> ( A. k e. A B e. CC -> [_ i / k ]_ B e. CC ) ) |
| 17 | 11 16 | syl5 | |- ( i e. A -> ( ph -> [_ i / k ]_ B e. CC ) ) |
| 18 | 10 17 | mpan9 | |- ( ( ( ( ph /\ m e. ZZ ) /\ A C_ ( ZZ>= ` m ) ) /\ i e. A ) -> [_ i / k ]_ B e. CC ) |
| 19 | simplr | |- ( ( ( ph /\ m e. ZZ ) /\ A C_ ( ZZ>= ` m ) ) -> m e. ZZ ) |
|
| 20 | 2 | ad2antrr | |- ( ( ( ph /\ m e. ZZ ) /\ A C_ ( ZZ>= ` m ) ) -> M e. ZZ ) |
| 21 | simpr | |- ( ( ( ph /\ m e. ZZ ) /\ A C_ ( ZZ>= ` m ) ) -> A C_ ( ZZ>= ` m ) ) |
|
| 22 | 3 1 | sseqtrdi | |- ( ph -> A C_ ( ZZ>= ` M ) ) |
| 23 | 22 | ad2antrr | |- ( ( ( ph /\ m e. ZZ ) /\ A C_ ( ZZ>= ` m ) ) -> A C_ ( ZZ>= ` M ) ) |
| 24 | 9 18 19 20 21 23 | sumrb | |- ( ( ( ph /\ m e. ZZ ) /\ A C_ ( ZZ>= ` m ) ) -> ( seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x <-> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) ) |
| 25 | 24 | biimpd | |- ( ( ( ph /\ m e. ZZ ) /\ A C_ ( ZZ>= ` m ) ) -> ( seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x -> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) ) |
| 26 | 25 | expimpd | |- ( ( ph /\ m e. ZZ ) -> ( ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) -> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) ) |
| 27 | 26 | rexlimdva | |- ( ph -> ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) -> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) ) |
| 28 | 3 | ad2antrr | |- ( ( ( ph /\ m e. NN ) /\ f : ( 1 ... m ) -1-1-onto-> A ) -> A C_ Z ) |
| 29 | uzssz | |- ( ZZ>= ` M ) C_ ZZ |
|
| 30 | 1 29 | eqsstri | |- Z C_ ZZ |
| 31 | zssre | |- ZZ C_ RR |
|
| 32 | 30 31 | sstri | |- Z C_ RR |
| 33 | ltso | |- < Or RR |
|
| 34 | soss | |- ( Z C_ RR -> ( < Or RR -> < Or Z ) ) |
|
| 35 | 32 33 34 | mp2 | |- < Or Z |
| 36 | soss | |- ( A C_ Z -> ( < Or Z -> < Or A ) ) |
|
| 37 | 28 35 36 | mpisyl | |- ( ( ( ph /\ m e. NN ) /\ f : ( 1 ... m ) -1-1-onto-> A ) -> < Or A ) |
| 38 | fzfi | |- ( 1 ... m ) e. Fin |
|
| 39 | ovex | |- ( 1 ... m ) e. _V |
|
| 40 | 39 | f1oen | |- ( f : ( 1 ... m ) -1-1-onto-> A -> ( 1 ... m ) ~~ A ) |
| 41 | 40 | adantl | |- ( ( ( ph /\ m e. NN ) /\ f : ( 1 ... m ) -1-1-onto-> A ) -> ( 1 ... m ) ~~ A ) |
| 42 | 41 | ensymd | |- ( ( ( ph /\ m e. NN ) /\ f : ( 1 ... m ) -1-1-onto-> A ) -> A ~~ ( 1 ... m ) ) |
| 43 | enfii | |- ( ( ( 1 ... m ) e. Fin /\ A ~~ ( 1 ... m ) ) -> A e. Fin ) |
|
| 44 | 38 42 43 | sylancr | |- ( ( ( ph /\ m e. NN ) /\ f : ( 1 ... m ) -1-1-onto-> A ) -> A e. Fin ) |
| 45 | fz1iso | |- ( ( < Or A /\ A e. Fin ) -> E. g g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) |
|
| 46 | 37 44 45 | syl2anc | |- ( ( ( ph /\ m e. NN ) /\ f : ( 1 ... m ) -1-1-onto-> A ) -> E. g g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) |
| 47 | simpll | |- ( ( ( ph /\ m e. NN ) /\ ( f : ( 1 ... m ) -1-1-onto-> A /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> ph ) |
|
| 48 | 47 17 | mpan9 | |- ( ( ( ( ph /\ m e. NN ) /\ ( f : ( 1 ... m ) -1-1-onto-> A /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) /\ i e. A ) -> [_ i / k ]_ B e. CC ) |
| 49 | fveq2 | |- ( n = j -> ( f ` n ) = ( f ` j ) ) |
|
| 50 | 49 | csbeq1d | |- ( n = j -> [_ ( f ` n ) / k ]_ B = [_ ( f ` j ) / k ]_ B ) |
| 51 | csbcow | |- [_ ( f ` j ) / i ]_ [_ i / k ]_ B = [_ ( f ` j ) / k ]_ B |
|
| 52 | 50 51 | eqtr4di | |- ( n = j -> [_ ( f ` n ) / k ]_ B = [_ ( f ` j ) / i ]_ [_ i / k ]_ B ) |
| 53 | 52 | cbvmptv | |- ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) = ( j e. NN |-> [_ ( f ` j ) / i ]_ [_ i / k ]_ B ) |
| 54 | eqid | |- ( j e. NN |-> [_ ( g ` j ) / i ]_ [_ i / k ]_ B ) = ( j e. NN |-> [_ ( g ` j ) / i ]_ [_ i / k ]_ B ) |
|
| 55 | simplr | |- ( ( ( ph /\ m e. NN ) /\ ( f : ( 1 ... m ) -1-1-onto-> A /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> m e. NN ) |
|
| 56 | 2 | ad2antrr | |- ( ( ( ph /\ m e. NN ) /\ ( f : ( 1 ... m ) -1-1-onto-> A /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> M e. ZZ ) |
| 57 | 22 | ad2antrr | |- ( ( ( ph /\ m e. NN ) /\ ( f : ( 1 ... m ) -1-1-onto-> A /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> A C_ ( ZZ>= ` M ) ) |
| 58 | simprl | |- ( ( ( ph /\ m e. NN ) /\ ( f : ( 1 ... m ) -1-1-onto-> A /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> f : ( 1 ... m ) -1-1-onto-> A ) |
|
| 59 | simprr | |- ( ( ( ph /\ m e. NN ) /\ ( f : ( 1 ... m ) -1-1-onto-> A /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) |
|
| 60 | 9 48 53 54 55 56 57 58 59 | summolem2a | |- ( ( ( ph /\ m e. NN ) /\ ( f : ( 1 ... m ) -1-1-onto-> A /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) |
| 61 | 60 | expr | |- ( ( ( ph /\ m e. NN ) /\ f : ( 1 ... m ) -1-1-onto-> A ) -> ( g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) -> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) |
| 62 | 61 | exlimdv | |- ( ( ( ph /\ m e. NN ) /\ f : ( 1 ... m ) -1-1-onto-> A ) -> ( E. g g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) -> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) |
| 63 | 46 62 | mpd | |- ( ( ( ph /\ m e. NN ) /\ f : ( 1 ... m ) -1-1-onto-> A ) -> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) |
| 64 | breq2 | |- ( x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) -> ( seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x <-> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) |
|
| 65 | 63 64 | syl5ibrcom | |- ( ( ( ph /\ m e. NN ) /\ f : ( 1 ... m ) -1-1-onto-> A ) -> ( x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) -> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) ) |
| 66 | 65 | expimpd | |- ( ( ph /\ m e. NN ) -> ( ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) -> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) ) |
| 67 | 66 | exlimdv | |- ( ( ph /\ m e. NN ) -> ( E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) -> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) ) |
| 68 | 67 | rexlimdva | |- ( ph -> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) -> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) ) |
| 69 | 27 68 | jaod | |- ( ph -> ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) -> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) ) |
| 70 | 2 | adantr | |- ( ( ph /\ seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) -> M e. ZZ ) |
| 71 | 22 | adantr | |- ( ( ph /\ seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) -> A C_ ( ZZ>= ` M ) ) |
| 72 | simpr | |- ( ( ph /\ seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) -> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) |
|
| 73 | fveq2 | |- ( m = M -> ( ZZ>= ` m ) = ( ZZ>= ` M ) ) |
|
| 74 | 73 | sseq2d | |- ( m = M -> ( A C_ ( ZZ>= ` m ) <-> A C_ ( ZZ>= ` M ) ) ) |
| 75 | seqeq1 | |- ( m = M -> seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) = seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ) |
|
| 76 | 75 | breq1d | |- ( m = M -> ( seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x <-> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) ) |
| 77 | 74 76 | anbi12d | |- ( m = M -> ( ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) <-> ( A C_ ( ZZ>= ` M ) /\ seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) ) ) |
| 78 | 77 | rspcev | |- ( ( M e. ZZ /\ ( A C_ ( ZZ>= ` M ) /\ seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) ) -> E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) ) |
| 79 | 70 71 72 78 | syl12anc | |- ( ( ph /\ seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) -> E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) ) |
| 80 | 79 | orcd | |- ( ( ph /\ seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) -> ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) ) |
| 81 | 80 | ex | |- ( ph -> ( seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x -> ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) ) ) |
| 82 | 69 81 | impbid | |- ( ph -> ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) <-> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) ) |
| 83 | simpr | |- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> j e. ( ZZ>= ` M ) ) |
|
| 84 | 29 83 | sselid | |- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> j e. ZZ ) |
| 85 | 83 1 | eleqtrrdi | |- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> j e. Z ) |
| 86 | 4 | ralrimiva | |- ( ph -> A. k e. Z ( F ` k ) = if ( k e. A , B , 0 ) ) |
| 87 | 86 | adantr | |- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> A. k e. Z ( F ` k ) = if ( k e. A , B , 0 ) ) |
| 88 | nfcsb1v | |- F/_ k [_ j / k ]_ if ( k e. A , B , 0 ) |
|
| 89 | 88 | nfeq2 | |- F/ k ( F ` j ) = [_ j / k ]_ if ( k e. A , B , 0 ) |
| 90 | fveq2 | |- ( k = j -> ( F ` k ) = ( F ` j ) ) |
|
| 91 | csbeq1a | |- ( k = j -> if ( k e. A , B , 0 ) = [_ j / k ]_ if ( k e. A , B , 0 ) ) |
|
| 92 | 90 91 | eqeq12d | |- ( k = j -> ( ( F ` k ) = if ( k e. A , B , 0 ) <-> ( F ` j ) = [_ j / k ]_ if ( k e. A , B , 0 ) ) ) |
| 93 | 89 92 | rspc | |- ( j e. Z -> ( A. k e. Z ( F ` k ) = if ( k e. A , B , 0 ) -> ( F ` j ) = [_ j / k ]_ if ( k e. A , B , 0 ) ) ) |
| 94 | 85 87 93 | sylc | |- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> ( F ` j ) = [_ j / k ]_ if ( k e. A , B , 0 ) ) |
| 95 | fvex | |- ( F ` j ) e. _V |
|
| 96 | 94 95 | eqeltrrdi | |- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> [_ j / k ]_ if ( k e. A , B , 0 ) e. _V ) |
| 97 | nfcv | |- F/_ n if ( k e. A , B , 0 ) |
|
| 98 | nfv | |- F/ k n e. A |
|
| 99 | nfcsb1v | |- F/_ k [_ n / k ]_ B |
|
| 100 | nfcv | |- F/_ k 0 |
|
| 101 | 98 99 100 | nfif | |- F/_ k if ( n e. A , [_ n / k ]_ B , 0 ) |
| 102 | eleq1w | |- ( k = n -> ( k e. A <-> n e. A ) ) |
|
| 103 | csbeq1a | |- ( k = n -> B = [_ n / k ]_ B ) |
|
| 104 | 102 103 | ifbieq1d | |- ( k = n -> if ( k e. A , B , 0 ) = if ( n e. A , [_ n / k ]_ B , 0 ) ) |
| 105 | 97 101 104 | cbvmpt | |- ( k e. ZZ |-> if ( k e. A , B , 0 ) ) = ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) |
| 106 | 105 | eqcomi | |- ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) = ( k e. ZZ |-> if ( k e. A , B , 0 ) ) |
| 107 | 106 | fvmpts | |- ( ( j e. ZZ /\ [_ j / k ]_ if ( k e. A , B , 0 ) e. _V ) -> ( ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ` j ) = [_ j / k ]_ if ( k e. A , B , 0 ) ) |
| 108 | 84 96 107 | syl2anc | |- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> ( ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ` j ) = [_ j / k ]_ if ( k e. A , B , 0 ) ) |
| 109 | 108 94 | eqtr4d | |- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> ( ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ` j ) = ( F ` j ) ) |
| 110 | 2 109 | seqfeq | |- ( ph -> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) = seq M ( + , F ) ) |
| 111 | 110 | breq1d | |- ( ph -> ( seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x <-> seq M ( + , F ) ~~> x ) ) |
| 112 | 82 111 | bitrd | |- ( ph -> ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) <-> seq M ( + , F ) ~~> x ) ) |
| 113 | 112 | iotabidv | |- ( ph -> ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) ) = ( iota x seq M ( + , F ) ~~> x ) ) |
| 114 | df-sum | |- sum_ k e. A B = ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) ) |
|
| 115 | df-fv | |- ( ~~> ` seq M ( + , F ) ) = ( iota x seq M ( + , F ) ~~> x ) |
|
| 116 | 113 114 115 | 3eqtr4g | |- ( ph -> sum_ k e. A B = ( ~~> ` seq M ( + , F ) ) ) |