This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rebase the starting point of a sum. (Contributed by Mario Carneiro, 14-Jul-2013) (Revised by Mario Carneiro, 9-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | summo.1 | |- F = ( k e. ZZ |-> if ( k e. A , B , 0 ) ) |
|
| summo.2 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
||
| sumrb.4 | |- ( ph -> M e. ZZ ) |
||
| sumrb.5 | |- ( ph -> N e. ZZ ) |
||
| sumrb.6 | |- ( ph -> A C_ ( ZZ>= ` M ) ) |
||
| sumrb.7 | |- ( ph -> A C_ ( ZZ>= ` N ) ) |
||
| Assertion | sumrb | |- ( ph -> ( seq M ( + , F ) ~~> C <-> seq N ( + , F ) ~~> C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | summo.1 | |- F = ( k e. ZZ |-> if ( k e. A , B , 0 ) ) |
|
| 2 | summo.2 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
|
| 3 | sumrb.4 | |- ( ph -> M e. ZZ ) |
|
| 4 | sumrb.5 | |- ( ph -> N e. ZZ ) |
|
| 5 | sumrb.6 | |- ( ph -> A C_ ( ZZ>= ` M ) ) |
|
| 6 | sumrb.7 | |- ( ph -> A C_ ( ZZ>= ` N ) ) |
|
| 7 | 4 | adantr | |- ( ( ph /\ N e. ( ZZ>= ` M ) ) -> N e. ZZ ) |
| 8 | seqex | |- seq M ( + , F ) e. _V |
|
| 9 | climres | |- ( ( N e. ZZ /\ seq M ( + , F ) e. _V ) -> ( ( seq M ( + , F ) |` ( ZZ>= ` N ) ) ~~> C <-> seq M ( + , F ) ~~> C ) ) |
|
| 10 | 7 8 9 | sylancl | |- ( ( ph /\ N e. ( ZZ>= ` M ) ) -> ( ( seq M ( + , F ) |` ( ZZ>= ` N ) ) ~~> C <-> seq M ( + , F ) ~~> C ) ) |
| 11 | 2 | adantlr | |- ( ( ( ph /\ N e. ( ZZ>= ` M ) ) /\ k e. A ) -> B e. CC ) |
| 12 | simpr | |- ( ( ph /\ N e. ( ZZ>= ` M ) ) -> N e. ( ZZ>= ` M ) ) |
|
| 13 | 1 11 12 | sumrblem | |- ( ( ( ph /\ N e. ( ZZ>= ` M ) ) /\ A C_ ( ZZ>= ` N ) ) -> ( seq M ( + , F ) |` ( ZZ>= ` N ) ) = seq N ( + , F ) ) |
| 14 | 6 13 | mpidan | |- ( ( ph /\ N e. ( ZZ>= ` M ) ) -> ( seq M ( + , F ) |` ( ZZ>= ` N ) ) = seq N ( + , F ) ) |
| 15 | 14 | breq1d | |- ( ( ph /\ N e. ( ZZ>= ` M ) ) -> ( ( seq M ( + , F ) |` ( ZZ>= ` N ) ) ~~> C <-> seq N ( + , F ) ~~> C ) ) |
| 16 | 10 15 | bitr3d | |- ( ( ph /\ N e. ( ZZ>= ` M ) ) -> ( seq M ( + , F ) ~~> C <-> seq N ( + , F ) ~~> C ) ) |
| 17 | 2 | adantlr | |- ( ( ( ph /\ M e. ( ZZ>= ` N ) ) /\ k e. A ) -> B e. CC ) |
| 18 | simpr | |- ( ( ph /\ M e. ( ZZ>= ` N ) ) -> M e. ( ZZ>= ` N ) ) |
|
| 19 | 1 17 18 | sumrblem | |- ( ( ( ph /\ M e. ( ZZ>= ` N ) ) /\ A C_ ( ZZ>= ` M ) ) -> ( seq N ( + , F ) |` ( ZZ>= ` M ) ) = seq M ( + , F ) ) |
| 20 | 5 19 | mpidan | |- ( ( ph /\ M e. ( ZZ>= ` N ) ) -> ( seq N ( + , F ) |` ( ZZ>= ` M ) ) = seq M ( + , F ) ) |
| 21 | 20 | breq1d | |- ( ( ph /\ M e. ( ZZ>= ` N ) ) -> ( ( seq N ( + , F ) |` ( ZZ>= ` M ) ) ~~> C <-> seq M ( + , F ) ~~> C ) ) |
| 22 | 3 | adantr | |- ( ( ph /\ M e. ( ZZ>= ` N ) ) -> M e. ZZ ) |
| 23 | seqex | |- seq N ( + , F ) e. _V |
|
| 24 | climres | |- ( ( M e. ZZ /\ seq N ( + , F ) e. _V ) -> ( ( seq N ( + , F ) |` ( ZZ>= ` M ) ) ~~> C <-> seq N ( + , F ) ~~> C ) ) |
|
| 25 | 22 23 24 | sylancl | |- ( ( ph /\ M e. ( ZZ>= ` N ) ) -> ( ( seq N ( + , F ) |` ( ZZ>= ` M ) ) ~~> C <-> seq N ( + , F ) ~~> C ) ) |
| 26 | 21 25 | bitr3d | |- ( ( ph /\ M e. ( ZZ>= ` N ) ) -> ( seq M ( + , F ) ~~> C <-> seq N ( + , F ) ~~> C ) ) |
| 27 | uztric | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` M ) \/ M e. ( ZZ>= ` N ) ) ) |
|
| 28 | 3 4 27 | syl2anc | |- ( ph -> ( N e. ( ZZ>= ` M ) \/ M e. ( ZZ>= ` N ) ) ) |
| 29 | 16 26 28 | mpjaodan | |- ( ph -> ( seq M ( + , F ) ~~> C <-> seq N ( + , F ) ~~> C ) ) |