This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition law for chained substitutions into a class. Version of csbco with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 10-Nov-2005) Avoid ax-13 . (Revised by GG, 10-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csbcow | |- [_ A / y ]_ [_ y / x ]_ B = [_ A / x ]_ B |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-csb | |- [_ y / x ]_ B = { z | [. y / x ]. z e. B } |
|
| 2 | 1 | eqabri | |- ( z e. [_ y / x ]_ B <-> [. y / x ]. z e. B ) |
| 3 | 2 | sbcbii | |- ( [. A / y ]. z e. [_ y / x ]_ B <-> [. A / y ]. [. y / x ]. z e. B ) |
| 4 | sbccow | |- ( [. A / y ]. [. y / x ]. z e. B <-> [. A / x ]. z e. B ) |
|
| 5 | 3 4 | bitri | |- ( [. A / y ]. z e. [_ y / x ]_ B <-> [. A / x ]. z e. B ) |
| 6 | 5 | abbii | |- { z | [. A / y ]. z e. [_ y / x ]_ B } = { z | [. A / x ]. z e. B } |
| 7 | df-csb | |- [_ A / y ]_ [_ y / x ]_ B = { z | [. A / y ]. z e. [_ y / x ]_ B } |
|
| 8 | df-csb | |- [_ A / x ]_ B = { z | [. A / x ]. z e. B } |
|
| 9 | 6 7 8 | 3eqtr4i | |- [_ A / y ]_ [_ y / x ]_ B = [_ A / x ]_ B |