This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Series sum with index set a subset of the upper integers. (Contributed by Mario Carneiro, 13-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zsum.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| zsum.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| zsum.3 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑍 ) | ||
| zsum.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) | ||
| zsum.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | ||
| Assertion | zsum | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 = ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zsum.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | zsum.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | zsum.3 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑍 ) | |
| 4 | zsum.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) | |
| 5 | zsum.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 6 | eleq1w | ⊢ ( 𝑛 = 𝑖 → ( 𝑛 ∈ 𝐴 ↔ 𝑖 ∈ 𝐴 ) ) | |
| 7 | csbeq1 | ⊢ ( 𝑛 = 𝑖 → ⦋ 𝑛 / 𝑘 ⦌ 𝐵 = ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ) | |
| 8 | 6 7 | ifbieq1d | ⊢ ( 𝑛 = 𝑖 → if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) = if ( 𝑖 ∈ 𝐴 , ⦋ 𝑖 / 𝑘 ⦌ 𝐵 , 0 ) ) |
| 9 | 8 | cbvmptv | ⊢ ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) = ( 𝑖 ∈ ℤ ↦ if ( 𝑖 ∈ 𝐴 , ⦋ 𝑖 / 𝑘 ⦌ 𝐵 , 0 ) ) |
| 10 | simpll | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ) → 𝜑 ) | |
| 11 | 5 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ ) |
| 12 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑖 / 𝑘 ⦌ 𝐵 | |
| 13 | 12 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ∈ ℂ |
| 14 | csbeq1a | ⊢ ( 𝑘 = 𝑖 → 𝐵 = ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ) | |
| 15 | 14 | eleq1d | ⊢ ( 𝑘 = 𝑖 → ( 𝐵 ∈ ℂ ↔ ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
| 16 | 13 15 | rspc | ⊢ ( 𝑖 ∈ 𝐴 → ( ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
| 17 | 11 16 | syl5 | ⊢ ( 𝑖 ∈ 𝐴 → ( 𝜑 → ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
| 18 | 10 17 | mpan9 | ⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ) ∧ 𝑖 ∈ 𝐴 ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 19 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ) → 𝑚 ∈ ℤ ) | |
| 20 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ) → 𝑀 ∈ ℤ ) |
| 21 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ) → 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ) | |
| 22 | 3 1 | sseqtrdi | ⊢ ( 𝜑 → 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 23 | 22 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ) → 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 24 | 9 18 19 20 21 23 | sumrb | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ) → ( seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ↔ seq 𝑀 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ) |
| 25 | 24 | biimpd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ) → ( seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 → seq 𝑀 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ) |
| 26 | 25 | expimpd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) → ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) → seq 𝑀 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ) |
| 27 | 26 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) → seq 𝑀 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ) |
| 28 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) → 𝐴 ⊆ 𝑍 ) |
| 29 | uzssz | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ | |
| 30 | 1 29 | eqsstri | ⊢ 𝑍 ⊆ ℤ |
| 31 | zssre | ⊢ ℤ ⊆ ℝ | |
| 32 | 30 31 | sstri | ⊢ 𝑍 ⊆ ℝ |
| 33 | ltso | ⊢ < Or ℝ | |
| 34 | soss | ⊢ ( 𝑍 ⊆ ℝ → ( < Or ℝ → < Or 𝑍 ) ) | |
| 35 | 32 33 34 | mp2 | ⊢ < Or 𝑍 |
| 36 | soss | ⊢ ( 𝐴 ⊆ 𝑍 → ( < Or 𝑍 → < Or 𝐴 ) ) | |
| 37 | 28 35 36 | mpisyl | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) → < Or 𝐴 ) |
| 38 | fzfi | ⊢ ( 1 ... 𝑚 ) ∈ Fin | |
| 39 | ovex | ⊢ ( 1 ... 𝑚 ) ∈ V | |
| 40 | 39 | f1oen | ⊢ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 → ( 1 ... 𝑚 ) ≈ 𝐴 ) |
| 41 | 40 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) → ( 1 ... 𝑚 ) ≈ 𝐴 ) |
| 42 | 41 | ensymd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) → 𝐴 ≈ ( 1 ... 𝑚 ) ) |
| 43 | enfii | ⊢ ( ( ( 1 ... 𝑚 ) ∈ Fin ∧ 𝐴 ≈ ( 1 ... 𝑚 ) ) → 𝐴 ∈ Fin ) | |
| 44 | 38 42 43 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) → 𝐴 ∈ Fin ) |
| 45 | fz1iso | ⊢ ( ( < Or 𝐴 ∧ 𝐴 ∈ Fin ) → ∃ 𝑔 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) | |
| 46 | 37 44 45 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) → ∃ 𝑔 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) |
| 47 | simpll | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) ) → 𝜑 ) | |
| 48 | 47 17 | mpan9 | ⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) ) ∧ 𝑖 ∈ 𝐴 ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 49 | fveq2 | ⊢ ( 𝑛 = 𝑗 → ( 𝑓 ‘ 𝑛 ) = ( 𝑓 ‘ 𝑗 ) ) | |
| 50 | 49 | csbeq1d | ⊢ ( 𝑛 = 𝑗 → ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 = ⦋ ( 𝑓 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) |
| 51 | csbcow | ⊢ ⦋ ( 𝑓 ‘ 𝑗 ) / 𝑖 ⦌ ⦋ 𝑖 / 𝑘 ⦌ 𝐵 = ⦋ ( 𝑓 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 | |
| 52 | 50 51 | eqtr4di | ⊢ ( 𝑛 = 𝑗 → ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 = ⦋ ( 𝑓 ‘ 𝑗 ) / 𝑖 ⦌ ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ) |
| 53 | 52 | cbvmptv | ⊢ ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) = ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑗 ) / 𝑖 ⦌ ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ) |
| 54 | eqid | ⊢ ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑖 ⦌ ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ) = ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑖 ⦌ ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ) | |
| 55 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) ) → 𝑚 ∈ ℕ ) | |
| 56 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) ) → 𝑀 ∈ ℤ ) |
| 57 | 22 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) ) → 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 58 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) ) → 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) | |
| 59 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) ) → 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) | |
| 60 | 9 48 53 54 55 56 57 58 59 | summolem2a | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) ) → seq 𝑀 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) |
| 61 | 60 | expr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) → ( 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) → seq 𝑀 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) |
| 62 | 61 | exlimdv | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) → ( ∃ 𝑔 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) → seq 𝑀 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) |
| 63 | 46 62 | mpd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) → seq 𝑀 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) |
| 64 | breq2 | ⊢ ( 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) → ( seq 𝑀 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ↔ seq 𝑀 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) | |
| 65 | 63 64 | syl5ibrcom | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) → ( 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) → seq 𝑀 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ) |
| 66 | 65 | expimpd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) → seq 𝑀 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ) |
| 67 | 66 | exlimdv | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) → seq 𝑀 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ) |
| 68 | 67 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) → seq 𝑀 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ) |
| 69 | 27 68 | jaod | ⊢ ( 𝜑 → ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) → seq 𝑀 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ) |
| 70 | 2 | adantr | ⊢ ( ( 𝜑 ∧ seq 𝑀 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) → 𝑀 ∈ ℤ ) |
| 71 | 22 | adantr | ⊢ ( ( 𝜑 ∧ seq 𝑀 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) → 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 72 | simpr | ⊢ ( ( 𝜑 ∧ seq 𝑀 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) → seq 𝑀 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) | |
| 73 | fveq2 | ⊢ ( 𝑚 = 𝑀 → ( ℤ≥ ‘ 𝑚 ) = ( ℤ≥ ‘ 𝑀 ) ) | |
| 74 | 73 | sseq2d | ⊢ ( 𝑚 = 𝑀 → ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ↔ 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ) ) |
| 75 | seqeq1 | ⊢ ( 𝑚 = 𝑀 → seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) = seq 𝑀 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ) | |
| 76 | 75 | breq1d | ⊢ ( 𝑚 = 𝑀 → ( seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ↔ seq 𝑀 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ) |
| 77 | 74 76 | anbi12d | ⊢ ( 𝑚 = 𝑀 → ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ↔ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ seq 𝑀 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ) ) |
| 78 | 77 | rspcev | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ seq 𝑀 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ) → ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ) |
| 79 | 70 71 72 78 | syl12anc | ⊢ ( ( 𝜑 ∧ seq 𝑀 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) → ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ) |
| 80 | 79 | orcd | ⊢ ( ( 𝜑 ∧ seq 𝑀 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) → ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) |
| 81 | 80 | ex | ⊢ ( 𝜑 → ( seq 𝑀 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 → ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) ) |
| 82 | 69 81 | impbid | ⊢ ( 𝜑 → ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ↔ seq 𝑀 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ) |
| 83 | simpr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 84 | 29 83 | sselid | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑗 ∈ ℤ ) |
| 85 | 83 1 | eleqtrrdi | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑗 ∈ 𝑍 ) |
| 86 | 4 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) |
| 87 | 86 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) |
| 88 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) | |
| 89 | 88 | nfeq2 | ⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑗 ) = ⦋ 𝑗 / 𝑘 ⦌ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) |
| 90 | fveq2 | ⊢ ( 𝑘 = 𝑗 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑗 ) ) | |
| 91 | csbeq1a | ⊢ ( 𝑘 = 𝑗 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) = ⦋ 𝑗 / 𝑘 ⦌ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) | |
| 92 | 90 91 | eqeq12d | ⊢ ( 𝑘 = 𝑗 → ( ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ↔ ( 𝐹 ‘ 𝑗 ) = ⦋ 𝑗 / 𝑘 ⦌ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) ) |
| 93 | 89 92 | rspc | ⊢ ( 𝑗 ∈ 𝑍 → ( ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) → ( 𝐹 ‘ 𝑗 ) = ⦋ 𝑗 / 𝑘 ⦌ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) ) |
| 94 | 85 87 93 | sylc | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑗 ) = ⦋ 𝑗 / 𝑘 ⦌ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) |
| 95 | fvex | ⊢ ( 𝐹 ‘ 𝑗 ) ∈ V | |
| 96 | 94 95 | eqeltrrdi | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ⦋ 𝑗 / 𝑘 ⦌ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ∈ V ) |
| 97 | nfcv | ⊢ Ⅎ 𝑛 if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) | |
| 98 | nfv | ⊢ Ⅎ 𝑘 𝑛 ∈ 𝐴 | |
| 99 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑛 / 𝑘 ⦌ 𝐵 | |
| 100 | nfcv | ⊢ Ⅎ 𝑘 0 | |
| 101 | 98 99 100 | nfif | ⊢ Ⅎ 𝑘 if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) |
| 102 | eleq1w | ⊢ ( 𝑘 = 𝑛 → ( 𝑘 ∈ 𝐴 ↔ 𝑛 ∈ 𝐴 ) ) | |
| 103 | csbeq1a | ⊢ ( 𝑘 = 𝑛 → 𝐵 = ⦋ 𝑛 / 𝑘 ⦌ 𝐵 ) | |
| 104 | 102 103 | ifbieq1d | ⊢ ( 𝑘 = 𝑛 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) = if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) |
| 105 | 97 101 104 | cbvmpt | ⊢ ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) = ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) |
| 106 | 105 | eqcomi | ⊢ ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) = ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) |
| 107 | 106 | fvmpts | ⊢ ( ( 𝑗 ∈ ℤ ∧ ⦋ 𝑗 / 𝑘 ⦌ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ∈ V ) → ( ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ‘ 𝑗 ) = ⦋ 𝑗 / 𝑘 ⦌ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) |
| 108 | 84 96 107 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ‘ 𝑗 ) = ⦋ 𝑗 / 𝑘 ⦌ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) |
| 109 | 108 94 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ‘ 𝑗 ) = ( 𝐹 ‘ 𝑗 ) ) |
| 110 | 2 109 | seqfeq | ⊢ ( 𝜑 → seq 𝑀 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) = seq 𝑀 ( + , 𝐹 ) ) |
| 111 | 110 | breq1d | ⊢ ( 𝜑 → ( seq 𝑀 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ↔ seq 𝑀 ( + , 𝐹 ) ⇝ 𝑥 ) ) |
| 112 | 82 111 | bitrd | ⊢ ( 𝜑 → ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ↔ seq 𝑀 ( + , 𝐹 ) ⇝ 𝑥 ) ) |
| 113 | 112 | iotabidv | ⊢ ( 𝜑 → ( ℩ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) = ( ℩ 𝑥 seq 𝑀 ( + , 𝐹 ) ⇝ 𝑥 ) ) |
| 114 | df-sum | ⊢ Σ 𝑘 ∈ 𝐴 𝐵 = ( ℩ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) | |
| 115 | df-fv | ⊢ ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) = ( ℩ 𝑥 seq 𝑀 ( + , 𝐹 ) ⇝ 𝑥 ) | |
| 116 | 113 114 115 | 3eqtr4g | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 = ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ) |