This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended real version of negdi . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xnegdi | |- ( ( A e. RR* /\ B e. RR* ) -> -e ( A +e B ) = ( -e A +e -e B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr | |- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
|
| 2 | elxr | |- ( B e. RR* <-> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
|
| 3 | recn | |- ( A e. RR -> A e. CC ) |
|
| 4 | recn | |- ( B e. RR -> B e. CC ) |
|
| 5 | negdi | |- ( ( A e. CC /\ B e. CC ) -> -u ( A + B ) = ( -u A + -u B ) ) |
|
| 6 | 3 4 5 | syl2an | |- ( ( A e. RR /\ B e. RR ) -> -u ( A + B ) = ( -u A + -u B ) ) |
| 7 | readdcl | |- ( ( A e. RR /\ B e. RR ) -> ( A + B ) e. RR ) |
|
| 8 | rexneg | |- ( ( A + B ) e. RR -> -e ( A + B ) = -u ( A + B ) ) |
|
| 9 | 7 8 | syl | |- ( ( A e. RR /\ B e. RR ) -> -e ( A + B ) = -u ( A + B ) ) |
| 10 | renegcl | |- ( A e. RR -> -u A e. RR ) |
|
| 11 | renegcl | |- ( B e. RR -> -u B e. RR ) |
|
| 12 | rexadd | |- ( ( -u A e. RR /\ -u B e. RR ) -> ( -u A +e -u B ) = ( -u A + -u B ) ) |
|
| 13 | 10 11 12 | syl2an | |- ( ( A e. RR /\ B e. RR ) -> ( -u A +e -u B ) = ( -u A + -u B ) ) |
| 14 | 6 9 13 | 3eqtr4d | |- ( ( A e. RR /\ B e. RR ) -> -e ( A + B ) = ( -u A +e -u B ) ) |
| 15 | rexadd | |- ( ( A e. RR /\ B e. RR ) -> ( A +e B ) = ( A + B ) ) |
|
| 16 | xnegeq | |- ( ( A +e B ) = ( A + B ) -> -e ( A +e B ) = -e ( A + B ) ) |
|
| 17 | 15 16 | syl | |- ( ( A e. RR /\ B e. RR ) -> -e ( A +e B ) = -e ( A + B ) ) |
| 18 | rexneg | |- ( A e. RR -> -e A = -u A ) |
|
| 19 | rexneg | |- ( B e. RR -> -e B = -u B ) |
|
| 20 | 18 19 | oveqan12d | |- ( ( A e. RR /\ B e. RR ) -> ( -e A +e -e B ) = ( -u A +e -u B ) ) |
| 21 | 14 17 20 | 3eqtr4d | |- ( ( A e. RR /\ B e. RR ) -> -e ( A +e B ) = ( -e A +e -e B ) ) |
| 22 | xnegpnf | |- -e +oo = -oo |
|
| 23 | oveq2 | |- ( B = +oo -> ( A +e B ) = ( A +e +oo ) ) |
|
| 24 | rexr | |- ( A e. RR -> A e. RR* ) |
|
| 25 | renemnf | |- ( A e. RR -> A =/= -oo ) |
|
| 26 | xaddpnf1 | |- ( ( A e. RR* /\ A =/= -oo ) -> ( A +e +oo ) = +oo ) |
|
| 27 | 24 25 26 | syl2anc | |- ( A e. RR -> ( A +e +oo ) = +oo ) |
| 28 | 23 27 | sylan9eqr | |- ( ( A e. RR /\ B = +oo ) -> ( A +e B ) = +oo ) |
| 29 | xnegeq | |- ( ( A +e B ) = +oo -> -e ( A +e B ) = -e +oo ) |
|
| 30 | 28 29 | syl | |- ( ( A e. RR /\ B = +oo ) -> -e ( A +e B ) = -e +oo ) |
| 31 | xnegeq | |- ( B = +oo -> -e B = -e +oo ) |
|
| 32 | 31 22 | eqtrdi | |- ( B = +oo -> -e B = -oo ) |
| 33 | 32 | oveq2d | |- ( B = +oo -> ( -e A +e -e B ) = ( -e A +e -oo ) ) |
| 34 | 18 10 | eqeltrd | |- ( A e. RR -> -e A e. RR ) |
| 35 | rexr | |- ( -e A e. RR -> -e A e. RR* ) |
|
| 36 | renepnf | |- ( -e A e. RR -> -e A =/= +oo ) |
|
| 37 | xaddmnf1 | |- ( ( -e A e. RR* /\ -e A =/= +oo ) -> ( -e A +e -oo ) = -oo ) |
|
| 38 | 35 36 37 | syl2anc | |- ( -e A e. RR -> ( -e A +e -oo ) = -oo ) |
| 39 | 34 38 | syl | |- ( A e. RR -> ( -e A +e -oo ) = -oo ) |
| 40 | 33 39 | sylan9eqr | |- ( ( A e. RR /\ B = +oo ) -> ( -e A +e -e B ) = -oo ) |
| 41 | 22 30 40 | 3eqtr4a | |- ( ( A e. RR /\ B = +oo ) -> -e ( A +e B ) = ( -e A +e -e B ) ) |
| 42 | xnegmnf | |- -e -oo = +oo |
|
| 43 | oveq2 | |- ( B = -oo -> ( A +e B ) = ( A +e -oo ) ) |
|
| 44 | renepnf | |- ( A e. RR -> A =/= +oo ) |
|
| 45 | xaddmnf1 | |- ( ( A e. RR* /\ A =/= +oo ) -> ( A +e -oo ) = -oo ) |
|
| 46 | 24 44 45 | syl2anc | |- ( A e. RR -> ( A +e -oo ) = -oo ) |
| 47 | 43 46 | sylan9eqr | |- ( ( A e. RR /\ B = -oo ) -> ( A +e B ) = -oo ) |
| 48 | xnegeq | |- ( ( A +e B ) = -oo -> -e ( A +e B ) = -e -oo ) |
|
| 49 | 47 48 | syl | |- ( ( A e. RR /\ B = -oo ) -> -e ( A +e B ) = -e -oo ) |
| 50 | xnegeq | |- ( B = -oo -> -e B = -e -oo ) |
|
| 51 | 50 42 | eqtrdi | |- ( B = -oo -> -e B = +oo ) |
| 52 | 51 | oveq2d | |- ( B = -oo -> ( -e A +e -e B ) = ( -e A +e +oo ) ) |
| 53 | renemnf | |- ( -e A e. RR -> -e A =/= -oo ) |
|
| 54 | xaddpnf1 | |- ( ( -e A e. RR* /\ -e A =/= -oo ) -> ( -e A +e +oo ) = +oo ) |
|
| 55 | 35 53 54 | syl2anc | |- ( -e A e. RR -> ( -e A +e +oo ) = +oo ) |
| 56 | 34 55 | syl | |- ( A e. RR -> ( -e A +e +oo ) = +oo ) |
| 57 | 52 56 | sylan9eqr | |- ( ( A e. RR /\ B = -oo ) -> ( -e A +e -e B ) = +oo ) |
| 58 | 42 49 57 | 3eqtr4a | |- ( ( A e. RR /\ B = -oo ) -> -e ( A +e B ) = ( -e A +e -e B ) ) |
| 59 | 21 41 58 | 3jaodan | |- ( ( A e. RR /\ ( B e. RR \/ B = +oo \/ B = -oo ) ) -> -e ( A +e B ) = ( -e A +e -e B ) ) |
| 60 | 2 59 | sylan2b | |- ( ( A e. RR /\ B e. RR* ) -> -e ( A +e B ) = ( -e A +e -e B ) ) |
| 61 | xneg0 | |- -e 0 = 0 |
|
| 62 | simpr | |- ( ( B e. RR* /\ B = -oo ) -> B = -oo ) |
|
| 63 | 62 | oveq2d | |- ( ( B e. RR* /\ B = -oo ) -> ( +oo +e B ) = ( +oo +e -oo ) ) |
| 64 | pnfaddmnf | |- ( +oo +e -oo ) = 0 |
|
| 65 | 63 64 | eqtrdi | |- ( ( B e. RR* /\ B = -oo ) -> ( +oo +e B ) = 0 ) |
| 66 | xnegeq | |- ( ( +oo +e B ) = 0 -> -e ( +oo +e B ) = -e 0 ) |
|
| 67 | 65 66 | syl | |- ( ( B e. RR* /\ B = -oo ) -> -e ( +oo +e B ) = -e 0 ) |
| 68 | 51 | adantl | |- ( ( B e. RR* /\ B = -oo ) -> -e B = +oo ) |
| 69 | 68 | oveq2d | |- ( ( B e. RR* /\ B = -oo ) -> ( -oo +e -e B ) = ( -oo +e +oo ) ) |
| 70 | mnfaddpnf | |- ( -oo +e +oo ) = 0 |
|
| 71 | 69 70 | eqtrdi | |- ( ( B e. RR* /\ B = -oo ) -> ( -oo +e -e B ) = 0 ) |
| 72 | 61 67 71 | 3eqtr4a | |- ( ( B e. RR* /\ B = -oo ) -> -e ( +oo +e B ) = ( -oo +e -e B ) ) |
| 73 | xaddpnf2 | |- ( ( B e. RR* /\ B =/= -oo ) -> ( +oo +e B ) = +oo ) |
|
| 74 | xnegeq | |- ( ( +oo +e B ) = +oo -> -e ( +oo +e B ) = -e +oo ) |
|
| 75 | 73 74 | syl | |- ( ( B e. RR* /\ B =/= -oo ) -> -e ( +oo +e B ) = -e +oo ) |
| 76 | xnegcl | |- ( B e. RR* -> -e B e. RR* ) |
|
| 77 | xnegeq | |- ( -e B = +oo -> -e -e B = -e +oo ) |
|
| 78 | 77 22 | eqtrdi | |- ( -e B = +oo -> -e -e B = -oo ) |
| 79 | xnegneg | |- ( B e. RR* -> -e -e B = B ) |
|
| 80 | 79 | eqeq1d | |- ( B e. RR* -> ( -e -e B = -oo <-> B = -oo ) ) |
| 81 | 78 80 | imbitrid | |- ( B e. RR* -> ( -e B = +oo -> B = -oo ) ) |
| 82 | 81 | necon3d | |- ( B e. RR* -> ( B =/= -oo -> -e B =/= +oo ) ) |
| 83 | 82 | imp | |- ( ( B e. RR* /\ B =/= -oo ) -> -e B =/= +oo ) |
| 84 | xaddmnf2 | |- ( ( -e B e. RR* /\ -e B =/= +oo ) -> ( -oo +e -e B ) = -oo ) |
|
| 85 | 76 83 84 | syl2an2r | |- ( ( B e. RR* /\ B =/= -oo ) -> ( -oo +e -e B ) = -oo ) |
| 86 | 22 75 85 | 3eqtr4a | |- ( ( B e. RR* /\ B =/= -oo ) -> -e ( +oo +e B ) = ( -oo +e -e B ) ) |
| 87 | 72 86 | pm2.61dane | |- ( B e. RR* -> -e ( +oo +e B ) = ( -oo +e -e B ) ) |
| 88 | 87 | adantl | |- ( ( A = +oo /\ B e. RR* ) -> -e ( +oo +e B ) = ( -oo +e -e B ) ) |
| 89 | simpl | |- ( ( A = +oo /\ B e. RR* ) -> A = +oo ) |
|
| 90 | 89 | oveq1d | |- ( ( A = +oo /\ B e. RR* ) -> ( A +e B ) = ( +oo +e B ) ) |
| 91 | xnegeq | |- ( ( A +e B ) = ( +oo +e B ) -> -e ( A +e B ) = -e ( +oo +e B ) ) |
|
| 92 | 90 91 | syl | |- ( ( A = +oo /\ B e. RR* ) -> -e ( A +e B ) = -e ( +oo +e B ) ) |
| 93 | xnegeq | |- ( A = +oo -> -e A = -e +oo ) |
|
| 94 | 93 | adantr | |- ( ( A = +oo /\ B e. RR* ) -> -e A = -e +oo ) |
| 95 | 94 22 | eqtrdi | |- ( ( A = +oo /\ B e. RR* ) -> -e A = -oo ) |
| 96 | 95 | oveq1d | |- ( ( A = +oo /\ B e. RR* ) -> ( -e A +e -e B ) = ( -oo +e -e B ) ) |
| 97 | 88 92 96 | 3eqtr4d | |- ( ( A = +oo /\ B e. RR* ) -> -e ( A +e B ) = ( -e A +e -e B ) ) |
| 98 | simpr | |- ( ( B e. RR* /\ B = +oo ) -> B = +oo ) |
|
| 99 | 98 | oveq2d | |- ( ( B e. RR* /\ B = +oo ) -> ( -oo +e B ) = ( -oo +e +oo ) ) |
| 100 | 99 70 | eqtrdi | |- ( ( B e. RR* /\ B = +oo ) -> ( -oo +e B ) = 0 ) |
| 101 | xnegeq | |- ( ( -oo +e B ) = 0 -> -e ( -oo +e B ) = -e 0 ) |
|
| 102 | 100 101 | syl | |- ( ( B e. RR* /\ B = +oo ) -> -e ( -oo +e B ) = -e 0 ) |
| 103 | 32 | adantl | |- ( ( B e. RR* /\ B = +oo ) -> -e B = -oo ) |
| 104 | 103 | oveq2d | |- ( ( B e. RR* /\ B = +oo ) -> ( +oo +e -e B ) = ( +oo +e -oo ) ) |
| 105 | 104 64 | eqtrdi | |- ( ( B e. RR* /\ B = +oo ) -> ( +oo +e -e B ) = 0 ) |
| 106 | 61 102 105 | 3eqtr4a | |- ( ( B e. RR* /\ B = +oo ) -> -e ( -oo +e B ) = ( +oo +e -e B ) ) |
| 107 | xaddmnf2 | |- ( ( B e. RR* /\ B =/= +oo ) -> ( -oo +e B ) = -oo ) |
|
| 108 | xnegeq | |- ( ( -oo +e B ) = -oo -> -e ( -oo +e B ) = -e -oo ) |
|
| 109 | 107 108 | syl | |- ( ( B e. RR* /\ B =/= +oo ) -> -e ( -oo +e B ) = -e -oo ) |
| 110 | xnegeq | |- ( -e B = -oo -> -e -e B = -e -oo ) |
|
| 111 | 110 42 | eqtrdi | |- ( -e B = -oo -> -e -e B = +oo ) |
| 112 | 79 | eqeq1d | |- ( B e. RR* -> ( -e -e B = +oo <-> B = +oo ) ) |
| 113 | 111 112 | imbitrid | |- ( B e. RR* -> ( -e B = -oo -> B = +oo ) ) |
| 114 | 113 | necon3d | |- ( B e. RR* -> ( B =/= +oo -> -e B =/= -oo ) ) |
| 115 | 114 | imp | |- ( ( B e. RR* /\ B =/= +oo ) -> -e B =/= -oo ) |
| 116 | xaddpnf2 | |- ( ( -e B e. RR* /\ -e B =/= -oo ) -> ( +oo +e -e B ) = +oo ) |
|
| 117 | 76 115 116 | syl2an2r | |- ( ( B e. RR* /\ B =/= +oo ) -> ( +oo +e -e B ) = +oo ) |
| 118 | 42 109 117 | 3eqtr4a | |- ( ( B e. RR* /\ B =/= +oo ) -> -e ( -oo +e B ) = ( +oo +e -e B ) ) |
| 119 | 106 118 | pm2.61dane | |- ( B e. RR* -> -e ( -oo +e B ) = ( +oo +e -e B ) ) |
| 120 | 119 | adantl | |- ( ( A = -oo /\ B e. RR* ) -> -e ( -oo +e B ) = ( +oo +e -e B ) ) |
| 121 | simpl | |- ( ( A = -oo /\ B e. RR* ) -> A = -oo ) |
|
| 122 | 121 | oveq1d | |- ( ( A = -oo /\ B e. RR* ) -> ( A +e B ) = ( -oo +e B ) ) |
| 123 | xnegeq | |- ( ( A +e B ) = ( -oo +e B ) -> -e ( A +e B ) = -e ( -oo +e B ) ) |
|
| 124 | 122 123 | syl | |- ( ( A = -oo /\ B e. RR* ) -> -e ( A +e B ) = -e ( -oo +e B ) ) |
| 125 | xnegeq | |- ( A = -oo -> -e A = -e -oo ) |
|
| 126 | 125 | adantr | |- ( ( A = -oo /\ B e. RR* ) -> -e A = -e -oo ) |
| 127 | 126 42 | eqtrdi | |- ( ( A = -oo /\ B e. RR* ) -> -e A = +oo ) |
| 128 | 127 | oveq1d | |- ( ( A = -oo /\ B e. RR* ) -> ( -e A +e -e B ) = ( +oo +e -e B ) ) |
| 129 | 120 124 128 | 3eqtr4d | |- ( ( A = -oo /\ B e. RR* ) -> -e ( A +e B ) = ( -e A +e -e B ) ) |
| 130 | 60 97 129 | 3jaoian | |- ( ( ( A e. RR \/ A = +oo \/ A = -oo ) /\ B e. RR* ) -> -e ( A +e B ) = ( -e A +e -e B ) ) |
| 131 | 1 130 | sylanb | |- ( ( A e. RR* /\ B e. RR* ) -> -e ( A +e B ) = ( -e A +e -e B ) ) |