This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition of positive infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xaddpnf1 | |- ( ( A e. RR* /\ A =/= -oo ) -> ( A +e +oo ) = +oo ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfxr | |- +oo e. RR* |
|
| 2 | xaddval | |- ( ( A e. RR* /\ +oo e. RR* ) -> ( A +e +oo ) = if ( A = +oo , if ( +oo = -oo , 0 , +oo ) , if ( A = -oo , if ( +oo = +oo , 0 , -oo ) , if ( +oo = +oo , +oo , if ( +oo = -oo , -oo , ( A + +oo ) ) ) ) ) ) |
|
| 3 | 1 2 | mpan2 | |- ( A e. RR* -> ( A +e +oo ) = if ( A = +oo , if ( +oo = -oo , 0 , +oo ) , if ( A = -oo , if ( +oo = +oo , 0 , -oo ) , if ( +oo = +oo , +oo , if ( +oo = -oo , -oo , ( A + +oo ) ) ) ) ) ) |
| 4 | pnfnemnf | |- +oo =/= -oo |
|
| 5 | ifnefalse | |- ( +oo =/= -oo -> if ( +oo = -oo , 0 , +oo ) = +oo ) |
|
| 6 | 4 5 | mp1i | |- ( A =/= -oo -> if ( +oo = -oo , 0 , +oo ) = +oo ) |
| 7 | ifnefalse | |- ( A =/= -oo -> if ( A = -oo , if ( +oo = +oo , 0 , -oo ) , if ( +oo = +oo , +oo , if ( +oo = -oo , -oo , ( A + +oo ) ) ) ) = if ( +oo = +oo , +oo , if ( +oo = -oo , -oo , ( A + +oo ) ) ) ) |
|
| 8 | eqid | |- +oo = +oo |
|
| 9 | 8 | iftruei | |- if ( +oo = +oo , +oo , if ( +oo = -oo , -oo , ( A + +oo ) ) ) = +oo |
| 10 | 7 9 | eqtrdi | |- ( A =/= -oo -> if ( A = -oo , if ( +oo = +oo , 0 , -oo ) , if ( +oo = +oo , +oo , if ( +oo = -oo , -oo , ( A + +oo ) ) ) ) = +oo ) |
| 11 | 6 10 | ifeq12d | |- ( A =/= -oo -> if ( A = +oo , if ( +oo = -oo , 0 , +oo ) , if ( A = -oo , if ( +oo = +oo , 0 , -oo ) , if ( +oo = +oo , +oo , if ( +oo = -oo , -oo , ( A + +oo ) ) ) ) ) = if ( A = +oo , +oo , +oo ) ) |
| 12 | ifid | |- if ( A = +oo , +oo , +oo ) = +oo |
|
| 13 | 11 12 | eqtrdi | |- ( A =/= -oo -> if ( A = +oo , if ( +oo = -oo , 0 , +oo ) , if ( A = -oo , if ( +oo = +oo , 0 , -oo ) , if ( +oo = +oo , +oo , if ( +oo = -oo , -oo , ( A + +oo ) ) ) ) ) = +oo ) |
| 14 | 3 13 | sylan9eq | |- ( ( A e. RR* /\ A =/= -oo ) -> ( A +e +oo ) = +oo ) |