This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Minus a real number. Remark BourbakiTop1 p. IV.15. (Contributed by FL, 26-Dec-2011) (Proof shortened by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rexneg | |- ( A e. RR -> -e A = -u A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xneg | |- -e A = if ( A = +oo , -oo , if ( A = -oo , +oo , -u A ) ) |
|
| 2 | renepnf | |- ( A e. RR -> A =/= +oo ) |
|
| 3 | ifnefalse | |- ( A =/= +oo -> if ( A = +oo , -oo , if ( A = -oo , +oo , -u A ) ) = if ( A = -oo , +oo , -u A ) ) |
|
| 4 | 2 3 | syl | |- ( A e. RR -> if ( A = +oo , -oo , if ( A = -oo , +oo , -u A ) ) = if ( A = -oo , +oo , -u A ) ) |
| 5 | renemnf | |- ( A e. RR -> A =/= -oo ) |
|
| 6 | ifnefalse | |- ( A =/= -oo -> if ( A = -oo , +oo , -u A ) = -u A ) |
|
| 7 | 5 6 | syl | |- ( A e. RR -> if ( A = -oo , +oo , -u A ) = -u A ) |
| 8 | 4 7 | eqtrd | |- ( A e. RR -> if ( A = +oo , -oo , if ( A = -oo , +oo , -u A ) ) = -u A ) |
| 9 | 1 8 | eqtrid | |- ( A e. RR -> -e A = -u A ) |