This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition of positive infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xaddpnf2 | |- ( ( A e. RR* /\ A =/= -oo ) -> ( +oo +e A ) = +oo ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfxr | |- +oo e. RR* |
|
| 2 | xaddval | |- ( ( +oo e. RR* /\ A e. RR* ) -> ( +oo +e A ) = if ( +oo = +oo , if ( A = -oo , 0 , +oo ) , if ( +oo = -oo , if ( A = +oo , 0 , -oo ) , if ( A = +oo , +oo , if ( A = -oo , -oo , ( +oo + A ) ) ) ) ) ) |
|
| 3 | 1 2 | mpan | |- ( A e. RR* -> ( +oo +e A ) = if ( +oo = +oo , if ( A = -oo , 0 , +oo ) , if ( +oo = -oo , if ( A = +oo , 0 , -oo ) , if ( A = +oo , +oo , if ( A = -oo , -oo , ( +oo + A ) ) ) ) ) ) |
| 4 | eqid | |- +oo = +oo |
|
| 5 | 4 | iftruei | |- if ( +oo = +oo , if ( A = -oo , 0 , +oo ) , if ( +oo = -oo , if ( A = +oo , 0 , -oo ) , if ( A = +oo , +oo , if ( A = -oo , -oo , ( +oo + A ) ) ) ) ) = if ( A = -oo , 0 , +oo ) |
| 6 | ifnefalse | |- ( A =/= -oo -> if ( A = -oo , 0 , +oo ) = +oo ) |
|
| 7 | 5 6 | eqtrid | |- ( A =/= -oo -> if ( +oo = +oo , if ( A = -oo , 0 , +oo ) , if ( +oo = -oo , if ( A = +oo , 0 , -oo ) , if ( A = +oo , +oo , if ( A = -oo , -oo , ( +oo + A ) ) ) ) ) = +oo ) |
| 8 | 3 7 | sylan9eq | |- ( ( A e. RR* /\ A =/= -oo ) -> ( +oo +e A ) = +oo ) |