This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition of negative infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xaddmnf2 | |- ( ( A e. RR* /\ A =/= +oo ) -> ( -oo +e A ) = -oo ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfxr | |- -oo e. RR* |
|
| 2 | xaddval | |- ( ( -oo e. RR* /\ A e. RR* ) -> ( -oo +e A ) = if ( -oo = +oo , if ( A = -oo , 0 , +oo ) , if ( -oo = -oo , if ( A = +oo , 0 , -oo ) , if ( A = +oo , +oo , if ( A = -oo , -oo , ( -oo + A ) ) ) ) ) ) |
|
| 3 | 1 2 | mpan | |- ( A e. RR* -> ( -oo +e A ) = if ( -oo = +oo , if ( A = -oo , 0 , +oo ) , if ( -oo = -oo , if ( A = +oo , 0 , -oo ) , if ( A = +oo , +oo , if ( A = -oo , -oo , ( -oo + A ) ) ) ) ) ) |
| 4 | mnfnepnf | |- -oo =/= +oo |
|
| 5 | ifnefalse | |- ( -oo =/= +oo -> if ( -oo = +oo , if ( A = -oo , 0 , +oo ) , if ( -oo = -oo , if ( A = +oo , 0 , -oo ) , if ( A = +oo , +oo , if ( A = -oo , -oo , ( -oo + A ) ) ) ) ) = if ( -oo = -oo , if ( A = +oo , 0 , -oo ) , if ( A = +oo , +oo , if ( A = -oo , -oo , ( -oo + A ) ) ) ) ) |
|
| 6 | 4 5 | ax-mp | |- if ( -oo = +oo , if ( A = -oo , 0 , +oo ) , if ( -oo = -oo , if ( A = +oo , 0 , -oo ) , if ( A = +oo , +oo , if ( A = -oo , -oo , ( -oo + A ) ) ) ) ) = if ( -oo = -oo , if ( A = +oo , 0 , -oo ) , if ( A = +oo , +oo , if ( A = -oo , -oo , ( -oo + A ) ) ) ) |
| 7 | eqid | |- -oo = -oo |
|
| 8 | 7 | iftruei | |- if ( -oo = -oo , if ( A = +oo , 0 , -oo ) , if ( A = +oo , +oo , if ( A = -oo , -oo , ( -oo + A ) ) ) ) = if ( A = +oo , 0 , -oo ) |
| 9 | 6 8 | eqtri | |- if ( -oo = +oo , if ( A = -oo , 0 , +oo ) , if ( -oo = -oo , if ( A = +oo , 0 , -oo ) , if ( A = +oo , +oo , if ( A = -oo , -oo , ( -oo + A ) ) ) ) ) = if ( A = +oo , 0 , -oo ) |
| 10 | ifnefalse | |- ( A =/= +oo -> if ( A = +oo , 0 , -oo ) = -oo ) |
|
| 11 | 9 10 | eqtrid | |- ( A =/= +oo -> if ( -oo = +oo , if ( A = -oo , 0 , +oo ) , if ( -oo = -oo , if ( A = +oo , 0 , -oo ) , if ( A = +oo , +oo , if ( A = -oo , -oo , ( -oo + A ) ) ) ) ) = -oo ) |
| 12 | 3 11 | sylan9eq | |- ( ( A e. RR* /\ A =/= +oo ) -> ( -oo +e A ) = -oo ) |