This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended real version of mulneg1 . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xmulneg1 | |- ( ( A e. RR* /\ B e. RR* ) -> ( -e A *e B ) = -e ( A *e B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xneg0 | |- -e 0 = 0 |
|
| 2 | 1 | eqeq2i | |- ( -e A = -e 0 <-> -e A = 0 ) |
| 3 | 0xr | |- 0 e. RR* |
|
| 4 | xneg11 | |- ( ( A e. RR* /\ 0 e. RR* ) -> ( -e A = -e 0 <-> A = 0 ) ) |
|
| 5 | 3 4 | mpan2 | |- ( A e. RR* -> ( -e A = -e 0 <-> A = 0 ) ) |
| 6 | 2 5 | bitr3id | |- ( A e. RR* -> ( -e A = 0 <-> A = 0 ) ) |
| 7 | 6 | adantr | |- ( ( A e. RR* /\ B e. RR* ) -> ( -e A = 0 <-> A = 0 ) ) |
| 8 | 7 | orbi1d | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( -e A = 0 \/ B = 0 ) <-> ( A = 0 \/ B = 0 ) ) ) |
| 9 | 8 | ifbid | |- ( ( A e. RR* /\ B e. RR* ) -> if ( ( -e A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ -e A = +oo ) \/ ( B < 0 /\ -e A = -oo ) ) \/ ( ( 0 < -e A /\ B = +oo ) \/ ( -e A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) \/ ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) ) , -oo , ( -e A x. B ) ) ) ) = if ( ( A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ -e A = +oo ) \/ ( B < 0 /\ -e A = -oo ) ) \/ ( ( 0 < -e A /\ B = +oo ) \/ ( -e A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) \/ ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) ) , -oo , ( -e A x. B ) ) ) ) ) |
| 10 | xnegpnf | |- -e +oo = -oo |
|
| 11 | 10 | eqeq2i | |- ( -e A = -e +oo <-> -e A = -oo ) |
| 12 | simpll | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> A e. RR* ) |
|
| 13 | pnfxr | |- +oo e. RR* |
|
| 14 | xneg11 | |- ( ( A e. RR* /\ +oo e. RR* ) -> ( -e A = -e +oo <-> A = +oo ) ) |
|
| 15 | 12 13 14 | sylancl | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( -e A = -e +oo <-> A = +oo ) ) |
| 16 | 11 15 | bitr3id | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( -e A = -oo <-> A = +oo ) ) |
| 17 | 16 | anbi2d | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( ( 0 < B /\ -e A = -oo ) <-> ( 0 < B /\ A = +oo ) ) ) |
| 18 | xnegmnf | |- -e -oo = +oo |
|
| 19 | 18 | eqeq2i | |- ( -e A = -e -oo <-> -e A = +oo ) |
| 20 | mnfxr | |- -oo e. RR* |
|
| 21 | xneg11 | |- ( ( A e. RR* /\ -oo e. RR* ) -> ( -e A = -e -oo <-> A = -oo ) ) |
|
| 22 | 12 20 21 | sylancl | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( -e A = -e -oo <-> A = -oo ) ) |
| 23 | 19 22 | bitr3id | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( -e A = +oo <-> A = -oo ) ) |
| 24 | 23 | anbi2d | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( ( B < 0 /\ -e A = +oo ) <-> ( B < 0 /\ A = -oo ) ) ) |
| 25 | 17 24 | orbi12d | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) <-> ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) ) ) |
| 26 | xlt0neg1 | |- ( A e. RR* -> ( A < 0 <-> 0 < -e A ) ) |
|
| 27 | 26 | ad2antrr | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( A < 0 <-> 0 < -e A ) ) |
| 28 | 27 | bicomd | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( 0 < -e A <-> A < 0 ) ) |
| 29 | 28 | anbi1d | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( ( 0 < -e A /\ B = -oo ) <-> ( A < 0 /\ B = -oo ) ) ) |
| 30 | xlt0neg2 | |- ( A e. RR* -> ( 0 < A <-> -e A < 0 ) ) |
|
| 31 | 30 | ad2antrr | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( 0 < A <-> -e A < 0 ) ) |
| 32 | 31 | bicomd | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( -e A < 0 <-> 0 < A ) ) |
| 33 | 32 | anbi1d | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( ( -e A < 0 /\ B = +oo ) <-> ( 0 < A /\ B = +oo ) ) ) |
| 34 | 29 33 | orbi12d | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) <-> ( ( A < 0 /\ B = -oo ) \/ ( 0 < A /\ B = +oo ) ) ) ) |
| 35 | orcom | |- ( ( ( A < 0 /\ B = -oo ) \/ ( 0 < A /\ B = +oo ) ) <-> ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) |
|
| 36 | 34 35 | bitrdi | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) <-> ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) |
| 37 | 25 36 | orbi12d | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) \/ ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) ) <-> ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) ) |
| 38 | 37 | biimpar | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) -> ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) \/ ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) ) ) |
| 39 | 38 | iftrued | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) -> if ( ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) \/ ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) ) , -oo , ( -e A x. B ) ) = -oo ) |
| 40 | xmullem2 | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) -> -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) ) |
|
| 41 | 40 | adantr | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) -> -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) ) |
| 42 | 23 | anbi2d | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( ( 0 < B /\ -e A = +oo ) <-> ( 0 < B /\ A = -oo ) ) ) |
| 43 | 16 | anbi2d | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( ( B < 0 /\ -e A = -oo ) <-> ( B < 0 /\ A = +oo ) ) ) |
| 44 | 42 43 | orbi12d | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( ( ( 0 < B /\ -e A = +oo ) \/ ( B < 0 /\ -e A = -oo ) ) <-> ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) ) ) |
| 45 | 28 | anbi1d | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( ( 0 < -e A /\ B = +oo ) <-> ( A < 0 /\ B = +oo ) ) ) |
| 46 | 32 | anbi1d | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( ( -e A < 0 /\ B = -oo ) <-> ( 0 < A /\ B = -oo ) ) ) |
| 47 | 45 46 | orbi12d | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( ( ( 0 < -e A /\ B = +oo ) \/ ( -e A < 0 /\ B = -oo ) ) <-> ( ( A < 0 /\ B = +oo ) \/ ( 0 < A /\ B = -oo ) ) ) ) |
| 48 | orcom | |- ( ( ( A < 0 /\ B = +oo ) \/ ( 0 < A /\ B = -oo ) ) <-> ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) |
|
| 49 | 47 48 | bitrdi | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( ( ( 0 < -e A /\ B = +oo ) \/ ( -e A < 0 /\ B = -oo ) ) <-> ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) |
| 50 | 44 49 | orbi12d | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( ( ( ( 0 < B /\ -e A = +oo ) \/ ( B < 0 /\ -e A = -oo ) ) \/ ( ( 0 < -e A /\ B = +oo ) \/ ( -e A < 0 /\ B = -oo ) ) ) <-> ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) ) |
| 51 | 50 | notbid | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( -. ( ( ( 0 < B /\ -e A = +oo ) \/ ( B < 0 /\ -e A = -oo ) ) \/ ( ( 0 < -e A /\ B = +oo ) \/ ( -e A < 0 /\ B = -oo ) ) ) <-> -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) ) |
| 52 | 41 51 | sylibrd | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) -> -. ( ( ( 0 < B /\ -e A = +oo ) \/ ( B < 0 /\ -e A = -oo ) ) \/ ( ( 0 < -e A /\ B = +oo ) \/ ( -e A < 0 /\ B = -oo ) ) ) ) ) |
| 53 | 52 | imp | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) -> -. ( ( ( 0 < B /\ -e A = +oo ) \/ ( B < 0 /\ -e A = -oo ) ) \/ ( ( 0 < -e A /\ B = +oo ) \/ ( -e A < 0 /\ B = -oo ) ) ) ) |
| 54 | 53 | iffalsed | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) -> if ( ( ( ( 0 < B /\ -e A = +oo ) \/ ( B < 0 /\ -e A = -oo ) ) \/ ( ( 0 < -e A /\ B = +oo ) \/ ( -e A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) \/ ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) ) , -oo , ( -e A x. B ) ) ) = if ( ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) \/ ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) ) , -oo , ( -e A x. B ) ) ) |
| 55 | iftrue | |- ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) -> if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) = +oo ) |
|
| 56 | 55 | adantl | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) -> if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) = +oo ) |
| 57 | xnegeq | |- ( if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) = +oo -> -e if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) = -e +oo ) |
|
| 58 | 56 57 | syl | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) -> -e if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) = -e +oo ) |
| 59 | 58 10 | eqtrdi | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) -> -e if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) = -oo ) |
| 60 | 39 54 59 | 3eqtr4d | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) -> if ( ( ( ( 0 < B /\ -e A = +oo ) \/ ( B < 0 /\ -e A = -oo ) ) \/ ( ( 0 < -e A /\ B = +oo ) \/ ( -e A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) \/ ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) ) , -oo , ( -e A x. B ) ) ) = -e if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) |
| 61 | 50 | biimpar | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> ( ( ( 0 < B /\ -e A = +oo ) \/ ( B < 0 /\ -e A = -oo ) ) \/ ( ( 0 < -e A /\ B = +oo ) \/ ( -e A < 0 /\ B = -oo ) ) ) ) |
| 62 | 61 | iftrued | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> if ( ( ( ( 0 < B /\ -e A = +oo ) \/ ( B < 0 /\ -e A = -oo ) ) \/ ( ( 0 < -e A /\ B = +oo ) \/ ( -e A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) \/ ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) ) , -oo , ( -e A x. B ) ) ) = +oo ) |
| 63 | 41 | con2d | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) -> -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) ) |
| 64 | 63 | imp | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) |
| 65 | 64 | iffalsed | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) = if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) |
| 66 | iftrue | |- ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) -> if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) = -oo ) |
|
| 67 | 66 | adantl | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) = -oo ) |
| 68 | 65 67 | eqtrd | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) = -oo ) |
| 69 | xnegeq | |- ( if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) = -oo -> -e if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) = -e -oo ) |
|
| 70 | 68 69 | syl | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> -e if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) = -e -oo ) |
| 71 | 70 18 | eqtrdi | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> -e if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) = +oo ) |
| 72 | 62 71 | eqtr4d | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> if ( ( ( ( 0 < B /\ -e A = +oo ) \/ ( B < 0 /\ -e A = -oo ) ) \/ ( ( 0 < -e A /\ B = +oo ) \/ ( -e A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) \/ ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) ) , -oo , ( -e A x. B ) ) ) = -e if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) |
| 73 | 72 | adantlr | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) /\ ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> if ( ( ( ( 0 < B /\ -e A = +oo ) \/ ( B < 0 /\ -e A = -oo ) ) \/ ( ( 0 < -e A /\ B = +oo ) \/ ( -e A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) \/ ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) ) , -oo , ( -e A x. B ) ) ) = -e if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) |
| 74 | 37 | notbid | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( -. ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) \/ ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) ) <-> -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) ) |
| 75 | 74 | biimpar | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) -> -. ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) \/ ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) ) ) |
| 76 | 75 | adantr | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> -. ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) \/ ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) ) ) |
| 77 | 76 | iffalsed | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> if ( ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) \/ ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) ) , -oo , ( -e A x. B ) ) = ( -e A x. B ) ) |
| 78 | 51 | biimpar | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> -. ( ( ( 0 < B /\ -e A = +oo ) \/ ( B < 0 /\ -e A = -oo ) ) \/ ( ( 0 < -e A /\ B = +oo ) \/ ( -e A < 0 /\ B = -oo ) ) ) ) |
| 79 | 78 | adantlr | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> -. ( ( ( 0 < B /\ -e A = +oo ) \/ ( B < 0 /\ -e A = -oo ) ) \/ ( ( 0 < -e A /\ B = +oo ) \/ ( -e A < 0 /\ B = -oo ) ) ) ) |
| 80 | 79 | iffalsed | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> if ( ( ( ( 0 < B /\ -e A = +oo ) \/ ( B < 0 /\ -e A = -oo ) ) \/ ( ( 0 < -e A /\ B = +oo ) \/ ( -e A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) \/ ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) ) , -oo , ( -e A x. B ) ) ) = if ( ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) \/ ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) ) , -oo , ( -e A x. B ) ) ) |
| 81 | iffalse | |- ( -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) -> if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) = if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) |
|
| 82 | 81 | ad2antlr | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) = if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) |
| 83 | iffalse | |- ( -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) -> if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) = ( A x. B ) ) |
|
| 84 | 83 | adantl | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) = ( A x. B ) ) |
| 85 | 82 84 | eqtrd | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) = ( A x. B ) ) |
| 86 | xnegeq | |- ( if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) = ( A x. B ) -> -e if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) = -e ( A x. B ) ) |
|
| 87 | 85 86 | syl | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> -e if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) = -e ( A x. B ) ) |
| 88 | xmullem | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> A e. RR ) |
|
| 89 | 88 | recnd | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> A e. CC ) |
| 90 | ancom | |- ( ( A e. RR* /\ B e. RR* ) <-> ( B e. RR* /\ A e. RR* ) ) |
|
| 91 | orcom | |- ( ( A = 0 \/ B = 0 ) <-> ( B = 0 \/ A = 0 ) ) |
|
| 92 | 91 | notbii | |- ( -. ( A = 0 \/ B = 0 ) <-> -. ( B = 0 \/ A = 0 ) ) |
| 93 | 90 92 | anbi12i | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) <-> ( ( B e. RR* /\ A e. RR* ) /\ -. ( B = 0 \/ A = 0 ) ) ) |
| 94 | orcom | |- ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) <-> ( ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) \/ ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) ) ) |
|
| 95 | 94 | notbii | |- ( -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) <-> -. ( ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) \/ ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) ) ) |
| 96 | 93 95 | anbi12i | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) <-> ( ( ( B e. RR* /\ A e. RR* ) /\ -. ( B = 0 \/ A = 0 ) ) /\ -. ( ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) \/ ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) ) ) ) |
| 97 | orcom | |- ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) <-> ( ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) \/ ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) ) ) |
|
| 98 | 97 | notbii | |- ( -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) <-> -. ( ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) \/ ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) ) ) |
| 99 | xmullem | |- ( ( ( ( ( B e. RR* /\ A e. RR* ) /\ -. ( B = 0 \/ A = 0 ) ) /\ -. ( ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) \/ ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) ) ) /\ -. ( ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) \/ ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) ) ) -> B e. RR ) |
|
| 100 | 96 98 99 | syl2anb | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> B e. RR ) |
| 101 | 100 | recnd | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> B e. CC ) |
| 102 | 89 101 | mulneg1d | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> ( -u A x. B ) = -u ( A x. B ) ) |
| 103 | rexneg | |- ( A e. RR -> -e A = -u A ) |
|
| 104 | 88 103 | syl | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> -e A = -u A ) |
| 105 | 104 | oveq1d | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> ( -e A x. B ) = ( -u A x. B ) ) |
| 106 | 88 100 | remulcld | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> ( A x. B ) e. RR ) |
| 107 | rexneg | |- ( ( A x. B ) e. RR -> -e ( A x. B ) = -u ( A x. B ) ) |
|
| 108 | 106 107 | syl | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> -e ( A x. B ) = -u ( A x. B ) ) |
| 109 | 102 105 108 | 3eqtr4d | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> ( -e A x. B ) = -e ( A x. B ) ) |
| 110 | 87 109 | eqtr4d | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> -e if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) = ( -e A x. B ) ) |
| 111 | 77 80 110 | 3eqtr4d | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> if ( ( ( ( 0 < B /\ -e A = +oo ) \/ ( B < 0 /\ -e A = -oo ) ) \/ ( ( 0 < -e A /\ B = +oo ) \/ ( -e A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) \/ ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) ) , -oo , ( -e A x. B ) ) ) = -e if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) |
| 112 | 73 111 | pm2.61dan | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) -> if ( ( ( ( 0 < B /\ -e A = +oo ) \/ ( B < 0 /\ -e A = -oo ) ) \/ ( ( 0 < -e A /\ B = +oo ) \/ ( -e A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) \/ ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) ) , -oo , ( -e A x. B ) ) ) = -e if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) |
| 113 | 60 112 | pm2.61dan | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> if ( ( ( ( 0 < B /\ -e A = +oo ) \/ ( B < 0 /\ -e A = -oo ) ) \/ ( ( 0 < -e A /\ B = +oo ) \/ ( -e A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) \/ ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) ) , -oo , ( -e A x. B ) ) ) = -e if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) |
| 114 | 113 | ifeq2da | |- ( ( A e. RR* /\ B e. RR* ) -> if ( ( A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ -e A = +oo ) \/ ( B < 0 /\ -e A = -oo ) ) \/ ( ( 0 < -e A /\ B = +oo ) \/ ( -e A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) \/ ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) ) , -oo , ( -e A x. B ) ) ) ) = if ( ( A = 0 \/ B = 0 ) , 0 , -e if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) ) |
| 115 | 9 114 | eqtrd | |- ( ( A e. RR* /\ B e. RR* ) -> if ( ( -e A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ -e A = +oo ) \/ ( B < 0 /\ -e A = -oo ) ) \/ ( ( 0 < -e A /\ B = +oo ) \/ ( -e A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) \/ ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) ) , -oo , ( -e A x. B ) ) ) ) = if ( ( A = 0 \/ B = 0 ) , 0 , -e if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) ) |
| 116 | xnegeq | |- ( if ( ( A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) = 0 -> -e if ( ( A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) = -e 0 ) |
|
| 117 | 116 1 | eqtrdi | |- ( if ( ( A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) = 0 -> -e if ( ( A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) = 0 ) |
| 118 | xnegeq | |- ( if ( ( A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) = if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) -> -e if ( ( A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) = -e if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) |
|
| 119 | 117 118 | ifsb | |- -e if ( ( A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) = if ( ( A = 0 \/ B = 0 ) , 0 , -e if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) |
| 120 | 115 119 | eqtr4di | |- ( ( A e. RR* /\ B e. RR* ) -> if ( ( -e A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ -e A = +oo ) \/ ( B < 0 /\ -e A = -oo ) ) \/ ( ( 0 < -e A /\ B = +oo ) \/ ( -e A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) \/ ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) ) , -oo , ( -e A x. B ) ) ) ) = -e if ( ( A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) ) |
| 121 | xnegcl | |- ( A e. RR* -> -e A e. RR* ) |
|
| 122 | xmulval | |- ( ( -e A e. RR* /\ B e. RR* ) -> ( -e A *e B ) = if ( ( -e A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ -e A = +oo ) \/ ( B < 0 /\ -e A = -oo ) ) \/ ( ( 0 < -e A /\ B = +oo ) \/ ( -e A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) \/ ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) ) , -oo , ( -e A x. B ) ) ) ) ) |
|
| 123 | 121 122 | sylan | |- ( ( A e. RR* /\ B e. RR* ) -> ( -e A *e B ) = if ( ( -e A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ -e A = +oo ) \/ ( B < 0 /\ -e A = -oo ) ) \/ ( ( 0 < -e A /\ B = +oo ) \/ ( -e A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) \/ ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) ) , -oo , ( -e A x. B ) ) ) ) ) |
| 124 | xmulval | |- ( ( A e. RR* /\ B e. RR* ) -> ( A *e B ) = if ( ( A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) ) |
|
| 125 | xnegeq | |- ( ( A *e B ) = if ( ( A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) -> -e ( A *e B ) = -e if ( ( A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) ) |
|
| 126 | 124 125 | syl | |- ( ( A e. RR* /\ B e. RR* ) -> -e ( A *e B ) = -e if ( ( A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) ) |
| 127 | 120 123 126 | 3eqtr4d | |- ( ( A e. RR* /\ B e. RR* ) -> ( -e A *e B ) = -e ( A *e B ) ) |