This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended real version of mulneg1 . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xmulneg1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( -𝑒 𝐴 ·e 𝐵 ) = -𝑒 ( 𝐴 ·e 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xneg0 | ⊢ -𝑒 0 = 0 | |
| 2 | 1 | eqeq2i | ⊢ ( -𝑒 𝐴 = -𝑒 0 ↔ -𝑒 𝐴 = 0 ) |
| 3 | 0xr | ⊢ 0 ∈ ℝ* | |
| 4 | xneg11 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( -𝑒 𝐴 = -𝑒 0 ↔ 𝐴 = 0 ) ) | |
| 5 | 3 4 | mpan2 | ⊢ ( 𝐴 ∈ ℝ* → ( -𝑒 𝐴 = -𝑒 0 ↔ 𝐴 = 0 ) ) |
| 6 | 2 5 | bitr3id | ⊢ ( 𝐴 ∈ ℝ* → ( -𝑒 𝐴 = 0 ↔ 𝐴 = 0 ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( -𝑒 𝐴 = 0 ↔ 𝐴 = 0 ) ) |
| 8 | 7 | orbi1d | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( -𝑒 𝐴 = 0 ∨ 𝐵 = 0 ) ↔ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ) |
| 9 | 8 | ifbid | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → if ( ( -𝑒 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = -∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( -𝑒 𝐴 · 𝐵 ) ) ) ) = if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = -∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( -𝑒 𝐴 · 𝐵 ) ) ) ) ) |
| 10 | xnegpnf | ⊢ -𝑒 +∞ = -∞ | |
| 11 | 10 | eqeq2i | ⊢ ( -𝑒 𝐴 = -𝑒 +∞ ↔ -𝑒 𝐴 = -∞ ) |
| 12 | simpll | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → 𝐴 ∈ ℝ* ) | |
| 13 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 14 | xneg11 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( -𝑒 𝐴 = -𝑒 +∞ ↔ 𝐴 = +∞ ) ) | |
| 15 | 12 13 14 | sylancl | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( -𝑒 𝐴 = -𝑒 +∞ ↔ 𝐴 = +∞ ) ) |
| 16 | 11 15 | bitr3id | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( -𝑒 𝐴 = -∞ ↔ 𝐴 = +∞ ) ) |
| 17 | 16 | anbi2d | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ↔ ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ) ) |
| 18 | xnegmnf | ⊢ -𝑒 -∞ = +∞ | |
| 19 | 18 | eqeq2i | ⊢ ( -𝑒 𝐴 = -𝑒 -∞ ↔ -𝑒 𝐴 = +∞ ) |
| 20 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 21 | xneg11 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ -∞ ∈ ℝ* ) → ( -𝑒 𝐴 = -𝑒 -∞ ↔ 𝐴 = -∞ ) ) | |
| 22 | 12 20 21 | sylancl | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( -𝑒 𝐴 = -𝑒 -∞ ↔ 𝐴 = -∞ ) ) |
| 23 | 19 22 | bitr3id | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( -𝑒 𝐴 = +∞ ↔ 𝐴 = -∞ ) ) |
| 24 | 23 | anbi2d | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ↔ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ) |
| 25 | 17 24 | orbi12d | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ↔ ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ) ) |
| 26 | xlt0neg1 | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 < 0 ↔ 0 < -𝑒 𝐴 ) ) | |
| 27 | 26 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( 𝐴 < 0 ↔ 0 < -𝑒 𝐴 ) ) |
| 28 | 27 | bicomd | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( 0 < -𝑒 𝐴 ↔ 𝐴 < 0 ) ) |
| 29 | 28 | anbi1d | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ↔ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) |
| 30 | xlt0neg2 | ⊢ ( 𝐴 ∈ ℝ* → ( 0 < 𝐴 ↔ -𝑒 𝐴 < 0 ) ) | |
| 31 | 30 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( 0 < 𝐴 ↔ -𝑒 𝐴 < 0 ) ) |
| 32 | 31 | bicomd | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( -𝑒 𝐴 < 0 ↔ 0 < 𝐴 ) ) |
| 33 | 32 | anbi1d | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ↔ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ) ) |
| 34 | 29 33 | orbi12d | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ↔ ( ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ∨ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ) ) ) |
| 35 | orcom | ⊢ ( ( ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ∨ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ) ↔ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) | |
| 36 | 34 35 | bitrdi | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ↔ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) |
| 37 | 25 36 | orbi12d | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ↔ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ) |
| 38 | 37 | biimpar | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) → ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) |
| 39 | 38 | iftrued | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) → if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( -𝑒 𝐴 · 𝐵 ) ) = -∞ ) |
| 40 | xmullem2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) → ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) ) | |
| 41 | 40 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) → ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) ) |
| 42 | 23 | anbi2d | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = +∞ ) ↔ ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ) ) |
| 43 | 16 | anbi2d | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( ( 𝐵 < 0 ∧ -𝑒 𝐴 = -∞ ) ↔ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ) |
| 44 | 42 43 | orbi12d | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = -∞ ) ) ↔ ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ) ) |
| 45 | 28 | anbi1d | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ↔ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) |
| 46 | 32 | anbi1d | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ↔ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ) ) |
| 47 | 45 46 | orbi12d | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ↔ ( ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ∨ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ) ) ) |
| 48 | orcom | ⊢ ( ( ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ∨ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ) ↔ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) | |
| 49 | 47 48 | bitrdi | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ↔ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) |
| 50 | 44 49 | orbi12d | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = -∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ↔ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) ) |
| 51 | 50 | notbid | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( ¬ ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = -∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ↔ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) ) |
| 52 | 41 51 | sylibrd | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) → ¬ ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = -∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ) |
| 53 | 52 | imp | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) → ¬ ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = -∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) |
| 54 | 53 | iffalsed | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) → if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = -∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( -𝑒 𝐴 · 𝐵 ) ) ) = if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( -𝑒 𝐴 · 𝐵 ) ) ) |
| 55 | iftrue | ⊢ ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) → if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) = +∞ ) | |
| 56 | 55 | adantl | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) → if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) = +∞ ) |
| 57 | xnegeq | ⊢ ( if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) = +∞ → -𝑒 if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) = -𝑒 +∞ ) | |
| 58 | 56 57 | syl | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) → -𝑒 if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) = -𝑒 +∞ ) |
| 59 | 58 10 | eqtrdi | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) → -𝑒 if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) = -∞ ) |
| 60 | 39 54 59 | 3eqtr4d | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) → if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = -∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( -𝑒 𝐴 · 𝐵 ) ) ) = -𝑒 if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) |
| 61 | 50 | biimpar | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = -∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) |
| 62 | 61 | iftrued | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = -∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( -𝑒 𝐴 · 𝐵 ) ) ) = +∞ ) |
| 63 | 41 | con2d | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) → ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ) |
| 64 | 63 | imp | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) |
| 65 | 64 | iffalsed | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) = if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) |
| 66 | iftrue | ⊢ ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) → if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) = -∞ ) | |
| 67 | 66 | adantl | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) = -∞ ) |
| 68 | 65 67 | eqtrd | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) = -∞ ) |
| 69 | xnegeq | ⊢ ( if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) = -∞ → -𝑒 if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) = -𝑒 -∞ ) | |
| 70 | 68 69 | syl | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → -𝑒 if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) = -𝑒 -∞ ) |
| 71 | 70 18 | eqtrdi | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → -𝑒 if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) = +∞ ) |
| 72 | 62 71 | eqtr4d | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = -∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( -𝑒 𝐴 · 𝐵 ) ) ) = -𝑒 if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) |
| 73 | 72 | adantlr | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ∧ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = -∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( -𝑒 𝐴 · 𝐵 ) ) ) = -𝑒 if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) |
| 74 | 37 | notbid | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( ¬ ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ↔ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ) |
| 75 | 74 | biimpar | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) → ¬ ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) |
| 76 | 75 | adantr | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → ¬ ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) |
| 77 | 76 | iffalsed | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( -𝑒 𝐴 · 𝐵 ) ) = ( -𝑒 𝐴 · 𝐵 ) ) |
| 78 | 51 | biimpar | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → ¬ ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = -∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) |
| 79 | 78 | adantlr | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → ¬ ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = -∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) |
| 80 | 79 | iffalsed | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = -∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( -𝑒 𝐴 · 𝐵 ) ) ) = if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( -𝑒 𝐴 · 𝐵 ) ) ) |
| 81 | iffalse | ⊢ ( ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) → if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) = if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) | |
| 82 | 81 | ad2antlr | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) = if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) |
| 83 | iffalse | ⊢ ( ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) → if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) = ( 𝐴 · 𝐵 ) ) | |
| 84 | 83 | adantl | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) = ( 𝐴 · 𝐵 ) ) |
| 85 | 82 84 | eqtrd | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) = ( 𝐴 · 𝐵 ) ) |
| 86 | xnegeq | ⊢ ( if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) = ( 𝐴 · 𝐵 ) → -𝑒 if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) = -𝑒 ( 𝐴 · 𝐵 ) ) | |
| 87 | 85 86 | syl | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → -𝑒 if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) = -𝑒 ( 𝐴 · 𝐵 ) ) |
| 88 | xmullem | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → 𝐴 ∈ ℝ ) | |
| 89 | 88 | recnd | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → 𝐴 ∈ ℂ ) |
| 90 | ancom | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ↔ ( 𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) ) | |
| 91 | orcom | ⊢ ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) ↔ ( 𝐵 = 0 ∨ 𝐴 = 0 ) ) | |
| 92 | 91 | notbii | ⊢ ( ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ↔ ¬ ( 𝐵 = 0 ∨ 𝐴 = 0 ) ) |
| 93 | 90 92 | anbi12i | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ↔ ( ( 𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) ∧ ¬ ( 𝐵 = 0 ∨ 𝐴 = 0 ) ) ) |
| 94 | orcom | ⊢ ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ↔ ( ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ∨ ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ) ) | |
| 95 | 94 | notbii | ⊢ ( ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ↔ ¬ ( ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ∨ ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ) ) |
| 96 | 93 95 | anbi12i | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ↔ ( ( ( 𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) ∧ ¬ ( 𝐵 = 0 ∨ 𝐴 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ∨ ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ) ) ) |
| 97 | orcom | ⊢ ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ↔ ( ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ∨ ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ) ) | |
| 98 | 97 | notbii | ⊢ ( ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ↔ ¬ ( ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ∨ ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ) ) |
| 99 | xmullem | ⊢ ( ( ( ( ( 𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) ∧ ¬ ( 𝐵 = 0 ∨ 𝐴 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ∨ ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ∨ ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ) ) → 𝐵 ∈ ℝ ) | |
| 100 | 96 98 99 | syl2anb | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → 𝐵 ∈ ℝ ) |
| 101 | 100 | recnd | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → 𝐵 ∈ ℂ ) |
| 102 | 89 101 | mulneg1d | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → ( - 𝐴 · 𝐵 ) = - ( 𝐴 · 𝐵 ) ) |
| 103 | rexneg | ⊢ ( 𝐴 ∈ ℝ → -𝑒 𝐴 = - 𝐴 ) | |
| 104 | 88 103 | syl | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → -𝑒 𝐴 = - 𝐴 ) |
| 105 | 104 | oveq1d | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → ( -𝑒 𝐴 · 𝐵 ) = ( - 𝐴 · 𝐵 ) ) |
| 106 | 88 100 | remulcld | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → ( 𝐴 · 𝐵 ) ∈ ℝ ) |
| 107 | rexneg | ⊢ ( ( 𝐴 · 𝐵 ) ∈ ℝ → -𝑒 ( 𝐴 · 𝐵 ) = - ( 𝐴 · 𝐵 ) ) | |
| 108 | 106 107 | syl | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → -𝑒 ( 𝐴 · 𝐵 ) = - ( 𝐴 · 𝐵 ) ) |
| 109 | 102 105 108 | 3eqtr4d | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → ( -𝑒 𝐴 · 𝐵 ) = -𝑒 ( 𝐴 · 𝐵 ) ) |
| 110 | 87 109 | eqtr4d | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → -𝑒 if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) = ( -𝑒 𝐴 · 𝐵 ) ) |
| 111 | 77 80 110 | 3eqtr4d | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = -∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( -𝑒 𝐴 · 𝐵 ) ) ) = -𝑒 if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) |
| 112 | 73 111 | pm2.61dan | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) → if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = -∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( -𝑒 𝐴 · 𝐵 ) ) ) = -𝑒 if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) |
| 113 | 60 112 | pm2.61dan | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = -∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( -𝑒 𝐴 · 𝐵 ) ) ) = -𝑒 if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) |
| 114 | 113 | ifeq2da | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = -∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( -𝑒 𝐴 · 𝐵 ) ) ) ) = if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , -𝑒 if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) ) |
| 115 | 9 114 | eqtrd | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → if ( ( -𝑒 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = -∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( -𝑒 𝐴 · 𝐵 ) ) ) ) = if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , -𝑒 if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) ) |
| 116 | xnegeq | ⊢ ( if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) = 0 → -𝑒 if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) = -𝑒 0 ) | |
| 117 | 116 1 | eqtrdi | ⊢ ( if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) = 0 → -𝑒 if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) = 0 ) |
| 118 | xnegeq | ⊢ ( if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) = if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) → -𝑒 if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) = -𝑒 if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) | |
| 119 | 117 118 | ifsb | ⊢ -𝑒 if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) = if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , -𝑒 if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) |
| 120 | 115 119 | eqtr4di | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → if ( ( -𝑒 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = -∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( -𝑒 𝐴 · 𝐵 ) ) ) ) = -𝑒 if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) ) |
| 121 | xnegcl | ⊢ ( 𝐴 ∈ ℝ* → -𝑒 𝐴 ∈ ℝ* ) | |
| 122 | xmulval | ⊢ ( ( -𝑒 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( -𝑒 𝐴 ·e 𝐵 ) = if ( ( -𝑒 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = -∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( -𝑒 𝐴 · 𝐵 ) ) ) ) ) | |
| 123 | 121 122 | sylan | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( -𝑒 𝐴 ·e 𝐵 ) = if ( ( -𝑒 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = -∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( -𝑒 𝐴 · 𝐵 ) ) ) ) ) |
| 124 | xmulval | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ·e 𝐵 ) = if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) ) | |
| 125 | xnegeq | ⊢ ( ( 𝐴 ·e 𝐵 ) = if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) → -𝑒 ( 𝐴 ·e 𝐵 ) = -𝑒 if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) ) | |
| 126 | 124 125 | syl | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → -𝑒 ( 𝐴 ·e 𝐵 ) = -𝑒 if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) ) |
| 127 | 120 123 126 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( -𝑒 𝐴 ·e 𝐵 ) = -𝑒 ( 𝐴 ·e 𝐵 ) ) |