This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rexmul . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xmullem | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> A e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioran | |- ( -. ( A = 0 \/ B = 0 ) <-> ( -. A = 0 /\ -. B = 0 ) ) |
|
| 2 | 1 | anbi2i | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) <-> ( ( A e. RR* /\ B e. RR* ) /\ ( -. A = 0 /\ -. B = 0 ) ) ) |
| 3 | ioran | |- ( -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) <-> ( -. ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) /\ -. ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) |
|
| 4 | ioran | |- ( -. ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) <-> ( -. ( 0 < B /\ A = +oo ) /\ -. ( B < 0 /\ A = -oo ) ) ) |
|
| 5 | ioran | |- ( -. ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) <-> ( -. ( 0 < A /\ B = +oo ) /\ -. ( A < 0 /\ B = -oo ) ) ) |
|
| 6 | 4 5 | anbi12i | |- ( ( -. ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) /\ -. ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) <-> ( ( -. ( 0 < B /\ A = +oo ) /\ -. ( B < 0 /\ A = -oo ) ) /\ ( -. ( 0 < A /\ B = +oo ) /\ -. ( A < 0 /\ B = -oo ) ) ) ) |
| 7 | 3 6 | bitri | |- ( -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) <-> ( ( -. ( 0 < B /\ A = +oo ) /\ -. ( B < 0 /\ A = -oo ) ) /\ ( -. ( 0 < A /\ B = +oo ) /\ -. ( A < 0 /\ B = -oo ) ) ) ) |
| 8 | ioran | |- ( -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) <-> ( -. ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) /\ -. ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) |
|
| 9 | ioran | |- ( -. ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) <-> ( -. ( 0 < B /\ A = -oo ) /\ -. ( B < 0 /\ A = +oo ) ) ) |
|
| 10 | ioran | |- ( -. ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) <-> ( -. ( 0 < A /\ B = -oo ) /\ -. ( A < 0 /\ B = +oo ) ) ) |
|
| 11 | 9 10 | anbi12i | |- ( ( -. ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) /\ -. ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) <-> ( ( -. ( 0 < B /\ A = -oo ) /\ -. ( B < 0 /\ A = +oo ) ) /\ ( -. ( 0 < A /\ B = -oo ) /\ -. ( A < 0 /\ B = +oo ) ) ) ) |
| 12 | 8 11 | bitri | |- ( -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) <-> ( ( -. ( 0 < B /\ A = -oo ) /\ -. ( B < 0 /\ A = +oo ) ) /\ ( -. ( 0 < A /\ B = -oo ) /\ -. ( A < 0 /\ B = +oo ) ) ) ) |
| 13 | 7 12 | anbi12i | |- ( ( -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) <-> ( ( ( -. ( 0 < B /\ A = +oo ) /\ -. ( B < 0 /\ A = -oo ) ) /\ ( -. ( 0 < A /\ B = +oo ) /\ -. ( A < 0 /\ B = -oo ) ) ) /\ ( ( -. ( 0 < B /\ A = -oo ) /\ -. ( B < 0 /\ A = +oo ) ) /\ ( -. ( 0 < A /\ B = -oo ) /\ -. ( A < 0 /\ B = +oo ) ) ) ) ) |
| 14 | simplll | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( -. A = 0 /\ -. B = 0 ) ) /\ ( ( ( -. ( 0 < B /\ A = +oo ) /\ -. ( B < 0 /\ A = -oo ) ) /\ ( -. ( 0 < A /\ B = +oo ) /\ -. ( A < 0 /\ B = -oo ) ) ) /\ ( ( -. ( 0 < B /\ A = -oo ) /\ -. ( B < 0 /\ A = +oo ) ) /\ ( -. ( 0 < A /\ B = -oo ) /\ -. ( A < 0 /\ B = +oo ) ) ) ) ) -> A e. RR* ) |
|
| 15 | elxr | |- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
|
| 16 | 14 15 | sylib | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( -. A = 0 /\ -. B = 0 ) ) /\ ( ( ( -. ( 0 < B /\ A = +oo ) /\ -. ( B < 0 /\ A = -oo ) ) /\ ( -. ( 0 < A /\ B = +oo ) /\ -. ( A < 0 /\ B = -oo ) ) ) /\ ( ( -. ( 0 < B /\ A = -oo ) /\ -. ( B < 0 /\ A = +oo ) ) /\ ( -. ( 0 < A /\ B = -oo ) /\ -. ( A < 0 /\ B = +oo ) ) ) ) ) -> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
| 17 | idd | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( -. A = 0 /\ -. B = 0 ) ) /\ ( ( ( -. ( 0 < B /\ A = +oo ) /\ -. ( B < 0 /\ A = -oo ) ) /\ ( -. ( 0 < A /\ B = +oo ) /\ -. ( A < 0 /\ B = -oo ) ) ) /\ ( ( -. ( 0 < B /\ A = -oo ) /\ -. ( B < 0 /\ A = +oo ) ) /\ ( -. ( 0 < A /\ B = -oo ) /\ -. ( A < 0 /\ B = +oo ) ) ) ) ) -> ( A e. RR -> A e. RR ) ) |
|
| 18 | simprlr | |- ( ( ( ( -. ( 0 < B /\ A = +oo ) /\ -. ( B < 0 /\ A = -oo ) ) /\ ( -. ( 0 < A /\ B = +oo ) /\ -. ( A < 0 /\ B = -oo ) ) ) /\ ( ( -. ( 0 < B /\ A = -oo ) /\ -. ( B < 0 /\ A = +oo ) ) /\ ( -. ( 0 < A /\ B = -oo ) /\ -. ( A < 0 /\ B = +oo ) ) ) ) -> -. ( B < 0 /\ A = +oo ) ) |
|
| 19 | 18 | adantl | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( -. A = 0 /\ -. B = 0 ) ) /\ ( ( ( -. ( 0 < B /\ A = +oo ) /\ -. ( B < 0 /\ A = -oo ) ) /\ ( -. ( 0 < A /\ B = +oo ) /\ -. ( A < 0 /\ B = -oo ) ) ) /\ ( ( -. ( 0 < B /\ A = -oo ) /\ -. ( B < 0 /\ A = +oo ) ) /\ ( -. ( 0 < A /\ B = -oo ) /\ -. ( A < 0 /\ B = +oo ) ) ) ) ) -> -. ( B < 0 /\ A = +oo ) ) |
| 20 | 19 | pm2.21d | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( -. A = 0 /\ -. B = 0 ) ) /\ ( ( ( -. ( 0 < B /\ A = +oo ) /\ -. ( B < 0 /\ A = -oo ) ) /\ ( -. ( 0 < A /\ B = +oo ) /\ -. ( A < 0 /\ B = -oo ) ) ) /\ ( ( -. ( 0 < B /\ A = -oo ) /\ -. ( B < 0 /\ A = +oo ) ) /\ ( -. ( 0 < A /\ B = -oo ) /\ -. ( A < 0 /\ B = +oo ) ) ) ) ) -> ( ( B < 0 /\ A = +oo ) -> A e. RR ) ) |
| 21 | 20 | expdimp | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( -. A = 0 /\ -. B = 0 ) ) /\ ( ( ( -. ( 0 < B /\ A = +oo ) /\ -. ( B < 0 /\ A = -oo ) ) /\ ( -. ( 0 < A /\ B = +oo ) /\ -. ( A < 0 /\ B = -oo ) ) ) /\ ( ( -. ( 0 < B /\ A = -oo ) /\ -. ( B < 0 /\ A = +oo ) ) /\ ( -. ( 0 < A /\ B = -oo ) /\ -. ( A < 0 /\ B = +oo ) ) ) ) ) /\ B < 0 ) -> ( A = +oo -> A e. RR ) ) |
| 22 | simplrr | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( -. A = 0 /\ -. B = 0 ) ) /\ ( ( ( -. ( 0 < B /\ A = +oo ) /\ -. ( B < 0 /\ A = -oo ) ) /\ ( -. ( 0 < A /\ B = +oo ) /\ -. ( A < 0 /\ B = -oo ) ) ) /\ ( ( -. ( 0 < B /\ A = -oo ) /\ -. ( B < 0 /\ A = +oo ) ) /\ ( -. ( 0 < A /\ B = -oo ) /\ -. ( A < 0 /\ B = +oo ) ) ) ) ) -> -. B = 0 ) |
|
| 23 | 22 | pm2.21d | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( -. A = 0 /\ -. B = 0 ) ) /\ ( ( ( -. ( 0 < B /\ A = +oo ) /\ -. ( B < 0 /\ A = -oo ) ) /\ ( -. ( 0 < A /\ B = +oo ) /\ -. ( A < 0 /\ B = -oo ) ) ) /\ ( ( -. ( 0 < B /\ A = -oo ) /\ -. ( B < 0 /\ A = +oo ) ) /\ ( -. ( 0 < A /\ B = -oo ) /\ -. ( A < 0 /\ B = +oo ) ) ) ) ) -> ( B = 0 -> ( A = +oo -> A e. RR ) ) ) |
| 24 | 23 | imp | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( -. A = 0 /\ -. B = 0 ) ) /\ ( ( ( -. ( 0 < B /\ A = +oo ) /\ -. ( B < 0 /\ A = -oo ) ) /\ ( -. ( 0 < A /\ B = +oo ) /\ -. ( A < 0 /\ B = -oo ) ) ) /\ ( ( -. ( 0 < B /\ A = -oo ) /\ -. ( B < 0 /\ A = +oo ) ) /\ ( -. ( 0 < A /\ B = -oo ) /\ -. ( A < 0 /\ B = +oo ) ) ) ) ) /\ B = 0 ) -> ( A = +oo -> A e. RR ) ) |
| 25 | simplll | |- ( ( ( ( -. ( 0 < B /\ A = +oo ) /\ -. ( B < 0 /\ A = -oo ) ) /\ ( -. ( 0 < A /\ B = +oo ) /\ -. ( A < 0 /\ B = -oo ) ) ) /\ ( ( -. ( 0 < B /\ A = -oo ) /\ -. ( B < 0 /\ A = +oo ) ) /\ ( -. ( 0 < A /\ B = -oo ) /\ -. ( A < 0 /\ B = +oo ) ) ) ) -> -. ( 0 < B /\ A = +oo ) ) |
|
| 26 | 25 | adantl | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( -. A = 0 /\ -. B = 0 ) ) /\ ( ( ( -. ( 0 < B /\ A = +oo ) /\ -. ( B < 0 /\ A = -oo ) ) /\ ( -. ( 0 < A /\ B = +oo ) /\ -. ( A < 0 /\ B = -oo ) ) ) /\ ( ( -. ( 0 < B /\ A = -oo ) /\ -. ( B < 0 /\ A = +oo ) ) /\ ( -. ( 0 < A /\ B = -oo ) /\ -. ( A < 0 /\ B = +oo ) ) ) ) ) -> -. ( 0 < B /\ A = +oo ) ) |
| 27 | 26 | pm2.21d | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( -. A = 0 /\ -. B = 0 ) ) /\ ( ( ( -. ( 0 < B /\ A = +oo ) /\ -. ( B < 0 /\ A = -oo ) ) /\ ( -. ( 0 < A /\ B = +oo ) /\ -. ( A < 0 /\ B = -oo ) ) ) /\ ( ( -. ( 0 < B /\ A = -oo ) /\ -. ( B < 0 /\ A = +oo ) ) /\ ( -. ( 0 < A /\ B = -oo ) /\ -. ( A < 0 /\ B = +oo ) ) ) ) ) -> ( ( 0 < B /\ A = +oo ) -> A e. RR ) ) |
| 28 | 27 | expdimp | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( -. A = 0 /\ -. B = 0 ) ) /\ ( ( ( -. ( 0 < B /\ A = +oo ) /\ -. ( B < 0 /\ A = -oo ) ) /\ ( -. ( 0 < A /\ B = +oo ) /\ -. ( A < 0 /\ B = -oo ) ) ) /\ ( ( -. ( 0 < B /\ A = -oo ) /\ -. ( B < 0 /\ A = +oo ) ) /\ ( -. ( 0 < A /\ B = -oo ) /\ -. ( A < 0 /\ B = +oo ) ) ) ) ) /\ 0 < B ) -> ( A = +oo -> A e. RR ) ) |
| 29 | simpllr | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( -. A = 0 /\ -. B = 0 ) ) /\ ( ( ( -. ( 0 < B /\ A = +oo ) /\ -. ( B < 0 /\ A = -oo ) ) /\ ( -. ( 0 < A /\ B = +oo ) /\ -. ( A < 0 /\ B = -oo ) ) ) /\ ( ( -. ( 0 < B /\ A = -oo ) /\ -. ( B < 0 /\ A = +oo ) ) /\ ( -. ( 0 < A /\ B = -oo ) /\ -. ( A < 0 /\ B = +oo ) ) ) ) ) -> B e. RR* ) |
|
| 30 | 0xr | |- 0 e. RR* |
|
| 31 | xrltso | |- < Or RR* |
|
| 32 | solin | |- ( ( < Or RR* /\ ( B e. RR* /\ 0 e. RR* ) ) -> ( B < 0 \/ B = 0 \/ 0 < B ) ) |
|
| 33 | 31 32 | mpan | |- ( ( B e. RR* /\ 0 e. RR* ) -> ( B < 0 \/ B = 0 \/ 0 < B ) ) |
| 34 | 29 30 33 | sylancl | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( -. A = 0 /\ -. B = 0 ) ) /\ ( ( ( -. ( 0 < B /\ A = +oo ) /\ -. ( B < 0 /\ A = -oo ) ) /\ ( -. ( 0 < A /\ B = +oo ) /\ -. ( A < 0 /\ B = -oo ) ) ) /\ ( ( -. ( 0 < B /\ A = -oo ) /\ -. ( B < 0 /\ A = +oo ) ) /\ ( -. ( 0 < A /\ B = -oo ) /\ -. ( A < 0 /\ B = +oo ) ) ) ) ) -> ( B < 0 \/ B = 0 \/ 0 < B ) ) |
| 35 | 21 24 28 34 | mpjao3dan | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( -. A = 0 /\ -. B = 0 ) ) /\ ( ( ( -. ( 0 < B /\ A = +oo ) /\ -. ( B < 0 /\ A = -oo ) ) /\ ( -. ( 0 < A /\ B = +oo ) /\ -. ( A < 0 /\ B = -oo ) ) ) /\ ( ( -. ( 0 < B /\ A = -oo ) /\ -. ( B < 0 /\ A = +oo ) ) /\ ( -. ( 0 < A /\ B = -oo ) /\ -. ( A < 0 /\ B = +oo ) ) ) ) ) -> ( A = +oo -> A e. RR ) ) |
| 36 | simpllr | |- ( ( ( ( -. ( 0 < B /\ A = +oo ) /\ -. ( B < 0 /\ A = -oo ) ) /\ ( -. ( 0 < A /\ B = +oo ) /\ -. ( A < 0 /\ B = -oo ) ) ) /\ ( ( -. ( 0 < B /\ A = -oo ) /\ -. ( B < 0 /\ A = +oo ) ) /\ ( -. ( 0 < A /\ B = -oo ) /\ -. ( A < 0 /\ B = +oo ) ) ) ) -> -. ( B < 0 /\ A = -oo ) ) |
|
| 37 | 36 | adantl | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( -. A = 0 /\ -. B = 0 ) ) /\ ( ( ( -. ( 0 < B /\ A = +oo ) /\ -. ( B < 0 /\ A = -oo ) ) /\ ( -. ( 0 < A /\ B = +oo ) /\ -. ( A < 0 /\ B = -oo ) ) ) /\ ( ( -. ( 0 < B /\ A = -oo ) /\ -. ( B < 0 /\ A = +oo ) ) /\ ( -. ( 0 < A /\ B = -oo ) /\ -. ( A < 0 /\ B = +oo ) ) ) ) ) -> -. ( B < 0 /\ A = -oo ) ) |
| 38 | 37 | pm2.21d | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( -. A = 0 /\ -. B = 0 ) ) /\ ( ( ( -. ( 0 < B /\ A = +oo ) /\ -. ( B < 0 /\ A = -oo ) ) /\ ( -. ( 0 < A /\ B = +oo ) /\ -. ( A < 0 /\ B = -oo ) ) ) /\ ( ( -. ( 0 < B /\ A = -oo ) /\ -. ( B < 0 /\ A = +oo ) ) /\ ( -. ( 0 < A /\ B = -oo ) /\ -. ( A < 0 /\ B = +oo ) ) ) ) ) -> ( ( B < 0 /\ A = -oo ) -> A e. RR ) ) |
| 39 | 38 | expdimp | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( -. A = 0 /\ -. B = 0 ) ) /\ ( ( ( -. ( 0 < B /\ A = +oo ) /\ -. ( B < 0 /\ A = -oo ) ) /\ ( -. ( 0 < A /\ B = +oo ) /\ -. ( A < 0 /\ B = -oo ) ) ) /\ ( ( -. ( 0 < B /\ A = -oo ) /\ -. ( B < 0 /\ A = +oo ) ) /\ ( -. ( 0 < A /\ B = -oo ) /\ -. ( A < 0 /\ B = +oo ) ) ) ) ) /\ B < 0 ) -> ( A = -oo -> A e. RR ) ) |
| 40 | 22 | pm2.21d | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( -. A = 0 /\ -. B = 0 ) ) /\ ( ( ( -. ( 0 < B /\ A = +oo ) /\ -. ( B < 0 /\ A = -oo ) ) /\ ( -. ( 0 < A /\ B = +oo ) /\ -. ( A < 0 /\ B = -oo ) ) ) /\ ( ( -. ( 0 < B /\ A = -oo ) /\ -. ( B < 0 /\ A = +oo ) ) /\ ( -. ( 0 < A /\ B = -oo ) /\ -. ( A < 0 /\ B = +oo ) ) ) ) ) -> ( B = 0 -> ( A = -oo -> A e. RR ) ) ) |
| 41 | 40 | imp | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( -. A = 0 /\ -. B = 0 ) ) /\ ( ( ( -. ( 0 < B /\ A = +oo ) /\ -. ( B < 0 /\ A = -oo ) ) /\ ( -. ( 0 < A /\ B = +oo ) /\ -. ( A < 0 /\ B = -oo ) ) ) /\ ( ( -. ( 0 < B /\ A = -oo ) /\ -. ( B < 0 /\ A = +oo ) ) /\ ( -. ( 0 < A /\ B = -oo ) /\ -. ( A < 0 /\ B = +oo ) ) ) ) ) /\ B = 0 ) -> ( A = -oo -> A e. RR ) ) |
| 42 | simprll | |- ( ( ( ( -. ( 0 < B /\ A = +oo ) /\ -. ( B < 0 /\ A = -oo ) ) /\ ( -. ( 0 < A /\ B = +oo ) /\ -. ( A < 0 /\ B = -oo ) ) ) /\ ( ( -. ( 0 < B /\ A = -oo ) /\ -. ( B < 0 /\ A = +oo ) ) /\ ( -. ( 0 < A /\ B = -oo ) /\ -. ( A < 0 /\ B = +oo ) ) ) ) -> -. ( 0 < B /\ A = -oo ) ) |
|
| 43 | 42 | adantl | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( -. A = 0 /\ -. B = 0 ) ) /\ ( ( ( -. ( 0 < B /\ A = +oo ) /\ -. ( B < 0 /\ A = -oo ) ) /\ ( -. ( 0 < A /\ B = +oo ) /\ -. ( A < 0 /\ B = -oo ) ) ) /\ ( ( -. ( 0 < B /\ A = -oo ) /\ -. ( B < 0 /\ A = +oo ) ) /\ ( -. ( 0 < A /\ B = -oo ) /\ -. ( A < 0 /\ B = +oo ) ) ) ) ) -> -. ( 0 < B /\ A = -oo ) ) |
| 44 | 43 | pm2.21d | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( -. A = 0 /\ -. B = 0 ) ) /\ ( ( ( -. ( 0 < B /\ A = +oo ) /\ -. ( B < 0 /\ A = -oo ) ) /\ ( -. ( 0 < A /\ B = +oo ) /\ -. ( A < 0 /\ B = -oo ) ) ) /\ ( ( -. ( 0 < B /\ A = -oo ) /\ -. ( B < 0 /\ A = +oo ) ) /\ ( -. ( 0 < A /\ B = -oo ) /\ -. ( A < 0 /\ B = +oo ) ) ) ) ) -> ( ( 0 < B /\ A = -oo ) -> A e. RR ) ) |
| 45 | 44 | expdimp | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( -. A = 0 /\ -. B = 0 ) ) /\ ( ( ( -. ( 0 < B /\ A = +oo ) /\ -. ( B < 0 /\ A = -oo ) ) /\ ( -. ( 0 < A /\ B = +oo ) /\ -. ( A < 0 /\ B = -oo ) ) ) /\ ( ( -. ( 0 < B /\ A = -oo ) /\ -. ( B < 0 /\ A = +oo ) ) /\ ( -. ( 0 < A /\ B = -oo ) /\ -. ( A < 0 /\ B = +oo ) ) ) ) ) /\ 0 < B ) -> ( A = -oo -> A e. RR ) ) |
| 46 | 39 41 45 34 | mpjao3dan | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( -. A = 0 /\ -. B = 0 ) ) /\ ( ( ( -. ( 0 < B /\ A = +oo ) /\ -. ( B < 0 /\ A = -oo ) ) /\ ( -. ( 0 < A /\ B = +oo ) /\ -. ( A < 0 /\ B = -oo ) ) ) /\ ( ( -. ( 0 < B /\ A = -oo ) /\ -. ( B < 0 /\ A = +oo ) ) /\ ( -. ( 0 < A /\ B = -oo ) /\ -. ( A < 0 /\ B = +oo ) ) ) ) ) -> ( A = -oo -> A e. RR ) ) |
| 47 | 17 35 46 | 3jaod | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( -. A = 0 /\ -. B = 0 ) ) /\ ( ( ( -. ( 0 < B /\ A = +oo ) /\ -. ( B < 0 /\ A = -oo ) ) /\ ( -. ( 0 < A /\ B = +oo ) /\ -. ( A < 0 /\ B = -oo ) ) ) /\ ( ( -. ( 0 < B /\ A = -oo ) /\ -. ( B < 0 /\ A = +oo ) ) /\ ( -. ( 0 < A /\ B = -oo ) /\ -. ( A < 0 /\ B = +oo ) ) ) ) ) -> ( ( A e. RR \/ A = +oo \/ A = -oo ) -> A e. RR ) ) |
| 48 | 16 47 | mpd | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( -. A = 0 /\ -. B = 0 ) ) /\ ( ( ( -. ( 0 < B /\ A = +oo ) /\ -. ( B < 0 /\ A = -oo ) ) /\ ( -. ( 0 < A /\ B = +oo ) /\ -. ( A < 0 /\ B = -oo ) ) ) /\ ( ( -. ( 0 < B /\ A = -oo ) /\ -. ( B < 0 /\ A = +oo ) ) /\ ( -. ( 0 < A /\ B = -oo ) /\ -. ( A < 0 /\ B = +oo ) ) ) ) ) -> A e. RR ) |
| 49 | 2 13 48 | syl2anb | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ ( -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) ) -> A e. RR ) |
| 50 | 49 | anassrs | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> A e. RR ) |