This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the extended real multiplication operation. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xmulval | |- ( ( A e. RR* /\ B e. RR* ) -> ( A *e B ) = if ( ( A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( x = A /\ y = B ) -> x = A ) |
|
| 2 | 1 | eqeq1d | |- ( ( x = A /\ y = B ) -> ( x = 0 <-> A = 0 ) ) |
| 3 | simpr | |- ( ( x = A /\ y = B ) -> y = B ) |
|
| 4 | 3 | eqeq1d | |- ( ( x = A /\ y = B ) -> ( y = 0 <-> B = 0 ) ) |
| 5 | 2 4 | orbi12d | |- ( ( x = A /\ y = B ) -> ( ( x = 0 \/ y = 0 ) <-> ( A = 0 \/ B = 0 ) ) ) |
| 6 | 3 | breq2d | |- ( ( x = A /\ y = B ) -> ( 0 < y <-> 0 < B ) ) |
| 7 | 1 | eqeq1d | |- ( ( x = A /\ y = B ) -> ( x = +oo <-> A = +oo ) ) |
| 8 | 6 7 | anbi12d | |- ( ( x = A /\ y = B ) -> ( ( 0 < y /\ x = +oo ) <-> ( 0 < B /\ A = +oo ) ) ) |
| 9 | 3 | breq1d | |- ( ( x = A /\ y = B ) -> ( y < 0 <-> B < 0 ) ) |
| 10 | 1 | eqeq1d | |- ( ( x = A /\ y = B ) -> ( x = -oo <-> A = -oo ) ) |
| 11 | 9 10 | anbi12d | |- ( ( x = A /\ y = B ) -> ( ( y < 0 /\ x = -oo ) <-> ( B < 0 /\ A = -oo ) ) ) |
| 12 | 8 11 | orbi12d | |- ( ( x = A /\ y = B ) -> ( ( ( 0 < y /\ x = +oo ) \/ ( y < 0 /\ x = -oo ) ) <-> ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) ) ) |
| 13 | 1 | breq2d | |- ( ( x = A /\ y = B ) -> ( 0 < x <-> 0 < A ) ) |
| 14 | 3 | eqeq1d | |- ( ( x = A /\ y = B ) -> ( y = +oo <-> B = +oo ) ) |
| 15 | 13 14 | anbi12d | |- ( ( x = A /\ y = B ) -> ( ( 0 < x /\ y = +oo ) <-> ( 0 < A /\ B = +oo ) ) ) |
| 16 | 1 | breq1d | |- ( ( x = A /\ y = B ) -> ( x < 0 <-> A < 0 ) ) |
| 17 | 3 | eqeq1d | |- ( ( x = A /\ y = B ) -> ( y = -oo <-> B = -oo ) ) |
| 18 | 16 17 | anbi12d | |- ( ( x = A /\ y = B ) -> ( ( x < 0 /\ y = -oo ) <-> ( A < 0 /\ B = -oo ) ) ) |
| 19 | 15 18 | orbi12d | |- ( ( x = A /\ y = B ) -> ( ( ( 0 < x /\ y = +oo ) \/ ( x < 0 /\ y = -oo ) ) <-> ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) |
| 20 | 12 19 | orbi12d | |- ( ( x = A /\ y = B ) -> ( ( ( ( 0 < y /\ x = +oo ) \/ ( y < 0 /\ x = -oo ) ) \/ ( ( 0 < x /\ y = +oo ) \/ ( x < 0 /\ y = -oo ) ) ) <-> ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) ) |
| 21 | 6 10 | anbi12d | |- ( ( x = A /\ y = B ) -> ( ( 0 < y /\ x = -oo ) <-> ( 0 < B /\ A = -oo ) ) ) |
| 22 | 9 7 | anbi12d | |- ( ( x = A /\ y = B ) -> ( ( y < 0 /\ x = +oo ) <-> ( B < 0 /\ A = +oo ) ) ) |
| 23 | 21 22 | orbi12d | |- ( ( x = A /\ y = B ) -> ( ( ( 0 < y /\ x = -oo ) \/ ( y < 0 /\ x = +oo ) ) <-> ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) ) ) |
| 24 | 13 17 | anbi12d | |- ( ( x = A /\ y = B ) -> ( ( 0 < x /\ y = -oo ) <-> ( 0 < A /\ B = -oo ) ) ) |
| 25 | 16 14 | anbi12d | |- ( ( x = A /\ y = B ) -> ( ( x < 0 /\ y = +oo ) <-> ( A < 0 /\ B = +oo ) ) ) |
| 26 | 24 25 | orbi12d | |- ( ( x = A /\ y = B ) -> ( ( ( 0 < x /\ y = -oo ) \/ ( x < 0 /\ y = +oo ) ) <-> ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) |
| 27 | 23 26 | orbi12d | |- ( ( x = A /\ y = B ) -> ( ( ( ( 0 < y /\ x = -oo ) \/ ( y < 0 /\ x = +oo ) ) \/ ( ( 0 < x /\ y = -oo ) \/ ( x < 0 /\ y = +oo ) ) ) <-> ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) ) |
| 28 | oveq12 | |- ( ( x = A /\ y = B ) -> ( x x. y ) = ( A x. B ) ) |
|
| 29 | 27 28 | ifbieq2d | |- ( ( x = A /\ y = B ) -> if ( ( ( ( 0 < y /\ x = -oo ) \/ ( y < 0 /\ x = +oo ) ) \/ ( ( 0 < x /\ y = -oo ) \/ ( x < 0 /\ y = +oo ) ) ) , -oo , ( x x. y ) ) = if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) |
| 30 | 20 29 | ifbieq2d | |- ( ( x = A /\ y = B ) -> if ( ( ( ( 0 < y /\ x = +oo ) \/ ( y < 0 /\ x = -oo ) ) \/ ( ( 0 < x /\ y = +oo ) \/ ( x < 0 /\ y = -oo ) ) ) , +oo , if ( ( ( ( 0 < y /\ x = -oo ) \/ ( y < 0 /\ x = +oo ) ) \/ ( ( 0 < x /\ y = -oo ) \/ ( x < 0 /\ y = +oo ) ) ) , -oo , ( x x. y ) ) ) = if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) |
| 31 | 5 30 | ifbieq2d | |- ( ( x = A /\ y = B ) -> if ( ( x = 0 \/ y = 0 ) , 0 , if ( ( ( ( 0 < y /\ x = +oo ) \/ ( y < 0 /\ x = -oo ) ) \/ ( ( 0 < x /\ y = +oo ) \/ ( x < 0 /\ y = -oo ) ) ) , +oo , if ( ( ( ( 0 < y /\ x = -oo ) \/ ( y < 0 /\ x = +oo ) ) \/ ( ( 0 < x /\ y = -oo ) \/ ( x < 0 /\ y = +oo ) ) ) , -oo , ( x x. y ) ) ) ) = if ( ( A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) ) |
| 32 | df-xmul | |- *e = ( x e. RR* , y e. RR* |-> if ( ( x = 0 \/ y = 0 ) , 0 , if ( ( ( ( 0 < y /\ x = +oo ) \/ ( y < 0 /\ x = -oo ) ) \/ ( ( 0 < x /\ y = +oo ) \/ ( x < 0 /\ y = -oo ) ) ) , +oo , if ( ( ( ( 0 < y /\ x = -oo ) \/ ( y < 0 /\ x = +oo ) ) \/ ( ( 0 < x /\ y = -oo ) \/ ( x < 0 /\ y = +oo ) ) ) , -oo , ( x x. y ) ) ) ) ) |
|
| 33 | c0ex | |- 0 e. _V |
|
| 34 | pnfex | |- +oo e. _V |
|
| 35 | mnfxr | |- -oo e. RR* |
|
| 36 | 35 | elexi | |- -oo e. _V |
| 37 | ovex | |- ( A x. B ) e. _V |
|
| 38 | 36 37 | ifex | |- if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) e. _V |
| 39 | 34 38 | ifex | |- if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) e. _V |
| 40 | 33 39 | ifex | |- if ( ( A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) e. _V |
| 41 | 31 32 40 | ovmpoa | |- ( ( A e. RR* /\ B e. RR* ) -> ( A *e B ) = if ( ( A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) ) |