This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for xmulneg1 . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xmullem2 | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) -> -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfnepnf | |- -oo =/= +oo |
|
| 2 | eqeq1 | |- ( A = -oo -> ( A = +oo <-> -oo = +oo ) ) |
|
| 3 | 2 | necon3bbid | |- ( A = -oo -> ( -. A = +oo <-> -oo =/= +oo ) ) |
| 4 | 1 3 | mpbiri | |- ( A = -oo -> -. A = +oo ) |
| 5 | 4 | con2i | |- ( A = +oo -> -. A = -oo ) |
| 6 | 5 | adantl | |- ( ( 0 < B /\ A = +oo ) -> -. A = -oo ) |
| 7 | 0xr | |- 0 e. RR* |
|
| 8 | nltmnf | |- ( 0 e. RR* -> -. 0 < -oo ) |
|
| 9 | 7 8 | ax-mp | |- -. 0 < -oo |
| 10 | breq2 | |- ( A = -oo -> ( 0 < A <-> 0 < -oo ) ) |
|
| 11 | 9 10 | mtbiri | |- ( A = -oo -> -. 0 < A ) |
| 12 | 11 | con2i | |- ( 0 < A -> -. A = -oo ) |
| 13 | 12 | adantr | |- ( ( 0 < A /\ B = +oo ) -> -. A = -oo ) |
| 14 | 6 13 | jaoi | |- ( ( ( 0 < B /\ A = +oo ) \/ ( 0 < A /\ B = +oo ) ) -> -. A = -oo ) |
| 15 | 14 | a1i | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( ( 0 < B /\ A = +oo ) \/ ( 0 < A /\ B = +oo ) ) -> -. A = -oo ) ) |
| 16 | simpr | |- ( ( A e. RR* /\ B e. RR* ) -> B e. RR* ) |
|
| 17 | xrltnsym | |- ( ( B e. RR* /\ 0 e. RR* ) -> ( B < 0 -> -. 0 < B ) ) |
|
| 18 | 16 7 17 | sylancl | |- ( ( A e. RR* /\ B e. RR* ) -> ( B < 0 -> -. 0 < B ) ) |
| 19 | 18 | adantrd | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( B < 0 /\ A = -oo ) -> -. 0 < B ) ) |
| 20 | breq2 | |- ( B = -oo -> ( 0 < B <-> 0 < -oo ) ) |
|
| 21 | 9 20 | mtbiri | |- ( B = -oo -> -. 0 < B ) |
| 22 | 21 | adantl | |- ( ( A < 0 /\ B = -oo ) -> -. 0 < B ) |
| 23 | 22 | a1i | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( A < 0 /\ B = -oo ) -> -. 0 < B ) ) |
| 24 | 19 23 | jaod | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( ( B < 0 /\ A = -oo ) \/ ( A < 0 /\ B = -oo ) ) -> -. 0 < B ) ) |
| 25 | 15 24 | orim12d | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( ( ( 0 < B /\ A = +oo ) \/ ( 0 < A /\ B = +oo ) ) \/ ( ( B < 0 /\ A = -oo ) \/ ( A < 0 /\ B = -oo ) ) ) -> ( -. A = -oo \/ -. 0 < B ) ) ) |
| 26 | ianor | |- ( -. ( 0 < B /\ A = -oo ) <-> ( -. 0 < B \/ -. A = -oo ) ) |
|
| 27 | orcom | |- ( ( -. 0 < B \/ -. A = -oo ) <-> ( -. A = -oo \/ -. 0 < B ) ) |
|
| 28 | 26 27 | bitri | |- ( -. ( 0 < B /\ A = -oo ) <-> ( -. A = -oo \/ -. 0 < B ) ) |
| 29 | 25 28 | imbitrrdi | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( ( ( 0 < B /\ A = +oo ) \/ ( 0 < A /\ B = +oo ) ) \/ ( ( B < 0 /\ A = -oo ) \/ ( A < 0 /\ B = -oo ) ) ) -> -. ( 0 < B /\ A = -oo ) ) ) |
| 30 | 18 | con2d | |- ( ( A e. RR* /\ B e. RR* ) -> ( 0 < B -> -. B < 0 ) ) |
| 31 | 30 | adantrd | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( 0 < B /\ A = +oo ) -> -. B < 0 ) ) |
| 32 | pnfnlt | |- ( 0 e. RR* -> -. +oo < 0 ) |
|
| 33 | 7 32 | ax-mp | |- -. +oo < 0 |
| 34 | simpr | |- ( ( 0 < A /\ B = +oo ) -> B = +oo ) |
|
| 35 | 34 | breq1d | |- ( ( 0 < A /\ B = +oo ) -> ( B < 0 <-> +oo < 0 ) ) |
| 36 | 33 35 | mtbiri | |- ( ( 0 < A /\ B = +oo ) -> -. B < 0 ) |
| 37 | 36 | a1i | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( 0 < A /\ B = +oo ) -> -. B < 0 ) ) |
| 38 | 31 37 | jaod | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( ( 0 < B /\ A = +oo ) \/ ( 0 < A /\ B = +oo ) ) -> -. B < 0 ) ) |
| 39 | 4 | a1i | |- ( ( A e. RR* /\ B e. RR* ) -> ( A = -oo -> -. A = +oo ) ) |
| 40 | 39 | adantld | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( B < 0 /\ A = -oo ) -> -. A = +oo ) ) |
| 41 | breq1 | |- ( A = +oo -> ( A < 0 <-> +oo < 0 ) ) |
|
| 42 | 33 41 | mtbiri | |- ( A = +oo -> -. A < 0 ) |
| 43 | 42 | con2i | |- ( A < 0 -> -. A = +oo ) |
| 44 | 43 | adantr | |- ( ( A < 0 /\ B = -oo ) -> -. A = +oo ) |
| 45 | 44 | a1i | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( A < 0 /\ B = -oo ) -> -. A = +oo ) ) |
| 46 | 40 45 | jaod | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( ( B < 0 /\ A = -oo ) \/ ( A < 0 /\ B = -oo ) ) -> -. A = +oo ) ) |
| 47 | 38 46 | orim12d | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( ( ( 0 < B /\ A = +oo ) \/ ( 0 < A /\ B = +oo ) ) \/ ( ( B < 0 /\ A = -oo ) \/ ( A < 0 /\ B = -oo ) ) ) -> ( -. B < 0 \/ -. A = +oo ) ) ) |
| 48 | ianor | |- ( -. ( B < 0 /\ A = +oo ) <-> ( -. B < 0 \/ -. A = +oo ) ) |
|
| 49 | 47 48 | imbitrrdi | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( ( ( 0 < B /\ A = +oo ) \/ ( 0 < A /\ B = +oo ) ) \/ ( ( B < 0 /\ A = -oo ) \/ ( A < 0 /\ B = -oo ) ) ) -> -. ( B < 0 /\ A = +oo ) ) ) |
| 50 | 29 49 | jcad | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( ( ( 0 < B /\ A = +oo ) \/ ( 0 < A /\ B = +oo ) ) \/ ( ( B < 0 /\ A = -oo ) \/ ( A < 0 /\ B = -oo ) ) ) -> ( -. ( 0 < B /\ A = -oo ) /\ -. ( B < 0 /\ A = +oo ) ) ) ) |
| 51 | ioran | |- ( -. ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) <-> ( -. ( 0 < B /\ A = -oo ) /\ -. ( B < 0 /\ A = +oo ) ) ) |
|
| 52 | 50 51 | imbitrrdi | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( ( ( 0 < B /\ A = +oo ) \/ ( 0 < A /\ B = +oo ) ) \/ ( ( B < 0 /\ A = -oo ) \/ ( A < 0 /\ B = -oo ) ) ) -> -. ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) ) ) |
| 53 | 21 | con2i | |- ( 0 < B -> -. B = -oo ) |
| 54 | 53 | adantr | |- ( ( 0 < B /\ A = +oo ) -> -. B = -oo ) |
| 55 | 54 | a1i | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( 0 < B /\ A = +oo ) -> -. B = -oo ) ) |
| 56 | pnfnemnf | |- +oo =/= -oo |
|
| 57 | eqeq1 | |- ( B = +oo -> ( B = -oo <-> +oo = -oo ) ) |
|
| 58 | 57 | necon3bbid | |- ( B = +oo -> ( -. B = -oo <-> +oo =/= -oo ) ) |
| 59 | 56 58 | mpbiri | |- ( B = +oo -> -. B = -oo ) |
| 60 | 59 | adantl | |- ( ( 0 < A /\ B = +oo ) -> -. B = -oo ) |
| 61 | 60 | a1i | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( 0 < A /\ B = +oo ) -> -. B = -oo ) ) |
| 62 | 55 61 | jaod | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( ( 0 < B /\ A = +oo ) \/ ( 0 < A /\ B = +oo ) ) -> -. B = -oo ) ) |
| 63 | 11 | adantl | |- ( ( B < 0 /\ A = -oo ) -> -. 0 < A ) |
| 64 | 63 | a1i | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( B < 0 /\ A = -oo ) -> -. 0 < A ) ) |
| 65 | simpl | |- ( ( A e. RR* /\ B e. RR* ) -> A e. RR* ) |
|
| 66 | xrltnsym | |- ( ( A e. RR* /\ 0 e. RR* ) -> ( A < 0 -> -. 0 < A ) ) |
|
| 67 | 65 7 66 | sylancl | |- ( ( A e. RR* /\ B e. RR* ) -> ( A < 0 -> -. 0 < A ) ) |
| 68 | 67 | adantrd | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( A < 0 /\ B = -oo ) -> -. 0 < A ) ) |
| 69 | 64 68 | jaod | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( ( B < 0 /\ A = -oo ) \/ ( A < 0 /\ B = -oo ) ) -> -. 0 < A ) ) |
| 70 | 62 69 | orim12d | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( ( ( 0 < B /\ A = +oo ) \/ ( 0 < A /\ B = +oo ) ) \/ ( ( B < 0 /\ A = -oo ) \/ ( A < 0 /\ B = -oo ) ) ) -> ( -. B = -oo \/ -. 0 < A ) ) ) |
| 71 | ianor | |- ( -. ( 0 < A /\ B = -oo ) <-> ( -. 0 < A \/ -. B = -oo ) ) |
|
| 72 | orcom | |- ( ( -. 0 < A \/ -. B = -oo ) <-> ( -. B = -oo \/ -. 0 < A ) ) |
|
| 73 | 71 72 | bitri | |- ( -. ( 0 < A /\ B = -oo ) <-> ( -. B = -oo \/ -. 0 < A ) ) |
| 74 | 70 73 | imbitrrdi | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( ( ( 0 < B /\ A = +oo ) \/ ( 0 < A /\ B = +oo ) ) \/ ( ( B < 0 /\ A = -oo ) \/ ( A < 0 /\ B = -oo ) ) ) -> -. ( 0 < A /\ B = -oo ) ) ) |
| 75 | 42 | adantl | |- ( ( 0 < B /\ A = +oo ) -> -. A < 0 ) |
| 76 | 75 | a1i | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( 0 < B /\ A = +oo ) -> -. A < 0 ) ) |
| 77 | 67 | con2d | |- ( ( A e. RR* /\ B e. RR* ) -> ( 0 < A -> -. A < 0 ) ) |
| 78 | 77 | adantrd | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( 0 < A /\ B = +oo ) -> -. A < 0 ) ) |
| 79 | 76 78 | jaod | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( ( 0 < B /\ A = +oo ) \/ ( 0 < A /\ B = +oo ) ) -> -. A < 0 ) ) |
| 80 | breq1 | |- ( B = +oo -> ( B < 0 <-> +oo < 0 ) ) |
|
| 81 | 33 80 | mtbiri | |- ( B = +oo -> -. B < 0 ) |
| 82 | 81 | con2i | |- ( B < 0 -> -. B = +oo ) |
| 83 | 82 | adantr | |- ( ( B < 0 /\ A = -oo ) -> -. B = +oo ) |
| 84 | 59 | con2i | |- ( B = -oo -> -. B = +oo ) |
| 85 | 84 | adantl | |- ( ( A < 0 /\ B = -oo ) -> -. B = +oo ) |
| 86 | 83 85 | jaoi | |- ( ( ( B < 0 /\ A = -oo ) \/ ( A < 0 /\ B = -oo ) ) -> -. B = +oo ) |
| 87 | 86 | a1i | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( ( B < 0 /\ A = -oo ) \/ ( A < 0 /\ B = -oo ) ) -> -. B = +oo ) ) |
| 88 | 79 87 | orim12d | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( ( ( 0 < B /\ A = +oo ) \/ ( 0 < A /\ B = +oo ) ) \/ ( ( B < 0 /\ A = -oo ) \/ ( A < 0 /\ B = -oo ) ) ) -> ( -. A < 0 \/ -. B = +oo ) ) ) |
| 89 | ianor | |- ( -. ( A < 0 /\ B = +oo ) <-> ( -. A < 0 \/ -. B = +oo ) ) |
|
| 90 | 88 89 | imbitrrdi | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( ( ( 0 < B /\ A = +oo ) \/ ( 0 < A /\ B = +oo ) ) \/ ( ( B < 0 /\ A = -oo ) \/ ( A < 0 /\ B = -oo ) ) ) -> -. ( A < 0 /\ B = +oo ) ) ) |
| 91 | 74 90 | jcad | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( ( ( 0 < B /\ A = +oo ) \/ ( 0 < A /\ B = +oo ) ) \/ ( ( B < 0 /\ A = -oo ) \/ ( A < 0 /\ B = -oo ) ) ) -> ( -. ( 0 < A /\ B = -oo ) /\ -. ( A < 0 /\ B = +oo ) ) ) ) |
| 92 | ioran | |- ( -. ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) <-> ( -. ( 0 < A /\ B = -oo ) /\ -. ( A < 0 /\ B = +oo ) ) ) |
|
| 93 | 91 92 | imbitrrdi | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( ( ( 0 < B /\ A = +oo ) \/ ( 0 < A /\ B = +oo ) ) \/ ( ( B < 0 /\ A = -oo ) \/ ( A < 0 /\ B = -oo ) ) ) -> -. ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) |
| 94 | 52 93 | jcad | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( ( ( 0 < B /\ A = +oo ) \/ ( 0 < A /\ B = +oo ) ) \/ ( ( B < 0 /\ A = -oo ) \/ ( A < 0 /\ B = -oo ) ) ) -> ( -. ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) /\ -. ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) ) |
| 95 | or4 | |- ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) <-> ( ( ( 0 < B /\ A = +oo ) \/ ( 0 < A /\ B = +oo ) ) \/ ( ( B < 0 /\ A = -oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) |
|
| 96 | ioran | |- ( -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) <-> ( -. ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) /\ -. ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) |
|
| 97 | 94 95 96 | 3imtr4g | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) -> -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) ) |