This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended real version of mulneg2 . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xmulneg2 | |- ( ( A e. RR* /\ B e. RR* ) -> ( A *e -e B ) = -e ( A *e B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmulneg1 | |- ( ( B e. RR* /\ A e. RR* ) -> ( -e B *e A ) = -e ( B *e A ) ) |
|
| 2 | 1 | ancoms | |- ( ( A e. RR* /\ B e. RR* ) -> ( -e B *e A ) = -e ( B *e A ) ) |
| 3 | xnegcl | |- ( B e. RR* -> -e B e. RR* ) |
|
| 4 | xmulcom | |- ( ( A e. RR* /\ -e B e. RR* ) -> ( A *e -e B ) = ( -e B *e A ) ) |
|
| 5 | 3 4 | sylan2 | |- ( ( A e. RR* /\ B e. RR* ) -> ( A *e -e B ) = ( -e B *e A ) ) |
| 6 | xmulcom | |- ( ( A e. RR* /\ B e. RR* ) -> ( A *e B ) = ( B *e A ) ) |
|
| 7 | xnegeq | |- ( ( A *e B ) = ( B *e A ) -> -e ( A *e B ) = -e ( B *e A ) ) |
|
| 8 | 6 7 | syl | |- ( ( A e. RR* /\ B e. RR* ) -> -e ( A *e B ) = -e ( B *e A ) ) |
| 9 | 2 5 8 | 3eqtr4d | |- ( ( A e. RR* /\ B e. RR* ) -> ( A *e -e B ) = -e ( A *e B ) ) |