This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for xadddi . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xadddilem | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> A e. RR ) |
|
| 2 | recn | |- ( A e. RR -> A e. CC ) |
|
| 3 | recn | |- ( B e. RR -> B e. CC ) |
|
| 4 | recn | |- ( C e. RR -> C e. CC ) |
|
| 5 | adddi | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A x. ( B + C ) ) = ( ( A x. B ) + ( A x. C ) ) ) |
|
| 6 | 2 3 4 5 | syl3an | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A x. ( B + C ) ) = ( ( A x. B ) + ( A x. C ) ) ) |
| 7 | 6 | 3expa | |- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( A x. ( B + C ) ) = ( ( A x. B ) + ( A x. C ) ) ) |
| 8 | readdcl | |- ( ( B e. RR /\ C e. RR ) -> ( B + C ) e. RR ) |
|
| 9 | rexmul | |- ( ( A e. RR /\ ( B + C ) e. RR ) -> ( A *e ( B + C ) ) = ( A x. ( B + C ) ) ) |
|
| 10 | 8 9 | sylan2 | |- ( ( A e. RR /\ ( B e. RR /\ C e. RR ) ) -> ( A *e ( B + C ) ) = ( A x. ( B + C ) ) ) |
| 11 | 10 | anassrs | |- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( A *e ( B + C ) ) = ( A x. ( B + C ) ) ) |
| 12 | remulcl | |- ( ( A e. RR /\ B e. RR ) -> ( A x. B ) e. RR ) |
|
| 13 | 12 | adantr | |- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( A x. B ) e. RR ) |
| 14 | remulcl | |- ( ( A e. RR /\ C e. RR ) -> ( A x. C ) e. RR ) |
|
| 15 | 14 | adantlr | |- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( A x. C ) e. RR ) |
| 16 | 13 15 | rexaddd | |- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( ( A x. B ) +e ( A x. C ) ) = ( ( A x. B ) + ( A x. C ) ) ) |
| 17 | 7 11 16 | 3eqtr4d | |- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( A *e ( B + C ) ) = ( ( A x. B ) +e ( A x. C ) ) ) |
| 18 | rexadd | |- ( ( B e. RR /\ C e. RR ) -> ( B +e C ) = ( B + C ) ) |
|
| 19 | 18 | adantll | |- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( B +e C ) = ( B + C ) ) |
| 20 | 19 | oveq2d | |- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( A *e ( B +e C ) ) = ( A *e ( B + C ) ) ) |
| 21 | rexmul | |- ( ( A e. RR /\ B e. RR ) -> ( A *e B ) = ( A x. B ) ) |
|
| 22 | 21 | adantr | |- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( A *e B ) = ( A x. B ) ) |
| 23 | rexmul | |- ( ( A e. RR /\ C e. RR ) -> ( A *e C ) = ( A x. C ) ) |
|
| 24 | 23 | adantlr | |- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( A *e C ) = ( A x. C ) ) |
| 25 | 22 24 | oveq12d | |- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( ( A *e B ) +e ( A *e C ) ) = ( ( A x. B ) +e ( A x. C ) ) ) |
| 26 | 17 20 25 | 3eqtr4d | |- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |
| 27 | 1 26 | sylanl1 | |- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) /\ C e. RR ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |
| 28 | rexr | |- ( A e. RR -> A e. RR* ) |
|
| 29 | 28 | 3ad2ant1 | |- ( ( A e. RR /\ B e. RR* /\ C e. RR* ) -> A e. RR* ) |
| 30 | xmulpnf1 | |- ( ( A e. RR* /\ 0 < A ) -> ( A *e +oo ) = +oo ) |
|
| 31 | 29 30 | sylan | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> ( A *e +oo ) = +oo ) |
| 32 | 31 | adantr | |- ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) -> ( A *e +oo ) = +oo ) |
| 33 | 21 12 | eqeltrd | |- ( ( A e. RR /\ B e. RR ) -> ( A *e B ) e. RR ) |
| 34 | 1 33 | sylan | |- ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) -> ( A *e B ) e. RR ) |
| 35 | rexr | |- ( ( A *e B ) e. RR -> ( A *e B ) e. RR* ) |
|
| 36 | renemnf | |- ( ( A *e B ) e. RR -> ( A *e B ) =/= -oo ) |
|
| 37 | xaddpnf1 | |- ( ( ( A *e B ) e. RR* /\ ( A *e B ) =/= -oo ) -> ( ( A *e B ) +e +oo ) = +oo ) |
|
| 38 | 35 36 37 | syl2anc | |- ( ( A *e B ) e. RR -> ( ( A *e B ) +e +oo ) = +oo ) |
| 39 | 34 38 | syl | |- ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) -> ( ( A *e B ) +e +oo ) = +oo ) |
| 40 | 32 39 | eqtr4d | |- ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) -> ( A *e +oo ) = ( ( A *e B ) +e +oo ) ) |
| 41 | 40 | adantr | |- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) /\ C = +oo ) -> ( A *e +oo ) = ( ( A *e B ) +e +oo ) ) |
| 42 | oveq2 | |- ( C = +oo -> ( B +e C ) = ( B +e +oo ) ) |
|
| 43 | rexr | |- ( B e. RR -> B e. RR* ) |
|
| 44 | renemnf | |- ( B e. RR -> B =/= -oo ) |
|
| 45 | xaddpnf1 | |- ( ( B e. RR* /\ B =/= -oo ) -> ( B +e +oo ) = +oo ) |
|
| 46 | 43 44 45 | syl2anc | |- ( B e. RR -> ( B +e +oo ) = +oo ) |
| 47 | 46 | adantl | |- ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) -> ( B +e +oo ) = +oo ) |
| 48 | 42 47 | sylan9eqr | |- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) /\ C = +oo ) -> ( B +e C ) = +oo ) |
| 49 | 48 | oveq2d | |- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) /\ C = +oo ) -> ( A *e ( B +e C ) ) = ( A *e +oo ) ) |
| 50 | oveq2 | |- ( C = +oo -> ( A *e C ) = ( A *e +oo ) ) |
|
| 51 | 50 32 | sylan9eqr | |- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) /\ C = +oo ) -> ( A *e C ) = +oo ) |
| 52 | 51 | oveq2d | |- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) /\ C = +oo ) -> ( ( A *e B ) +e ( A *e C ) ) = ( ( A *e B ) +e +oo ) ) |
| 53 | 41 49 52 | 3eqtr4d | |- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) /\ C = +oo ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |
| 54 | xmulmnf1 | |- ( ( A e. RR* /\ 0 < A ) -> ( A *e -oo ) = -oo ) |
|
| 55 | 29 54 | sylan | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> ( A *e -oo ) = -oo ) |
| 56 | 55 | adantr | |- ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) -> ( A *e -oo ) = -oo ) |
| 57 | 56 | adantr | |- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) /\ C = -oo ) -> ( A *e -oo ) = -oo ) |
| 58 | 34 | adantr | |- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) /\ C = -oo ) -> ( A *e B ) e. RR ) |
| 59 | renepnf | |- ( ( A *e B ) e. RR -> ( A *e B ) =/= +oo ) |
|
| 60 | xaddmnf1 | |- ( ( ( A *e B ) e. RR* /\ ( A *e B ) =/= +oo ) -> ( ( A *e B ) +e -oo ) = -oo ) |
|
| 61 | 35 59 60 | syl2anc | |- ( ( A *e B ) e. RR -> ( ( A *e B ) +e -oo ) = -oo ) |
| 62 | 58 61 | syl | |- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) /\ C = -oo ) -> ( ( A *e B ) +e -oo ) = -oo ) |
| 63 | 57 62 | eqtr4d | |- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) /\ C = -oo ) -> ( A *e -oo ) = ( ( A *e B ) +e -oo ) ) |
| 64 | oveq2 | |- ( C = -oo -> ( B +e C ) = ( B +e -oo ) ) |
|
| 65 | renepnf | |- ( B e. RR -> B =/= +oo ) |
|
| 66 | xaddmnf1 | |- ( ( B e. RR* /\ B =/= +oo ) -> ( B +e -oo ) = -oo ) |
|
| 67 | 43 65 66 | syl2anc | |- ( B e. RR -> ( B +e -oo ) = -oo ) |
| 68 | 67 | adantl | |- ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) -> ( B +e -oo ) = -oo ) |
| 69 | 64 68 | sylan9eqr | |- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) /\ C = -oo ) -> ( B +e C ) = -oo ) |
| 70 | 69 | oveq2d | |- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) /\ C = -oo ) -> ( A *e ( B +e C ) ) = ( A *e -oo ) ) |
| 71 | oveq2 | |- ( C = -oo -> ( A *e C ) = ( A *e -oo ) ) |
|
| 72 | 71 56 | sylan9eqr | |- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) /\ C = -oo ) -> ( A *e C ) = -oo ) |
| 73 | 72 | oveq2d | |- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) /\ C = -oo ) -> ( ( A *e B ) +e ( A *e C ) ) = ( ( A *e B ) +e -oo ) ) |
| 74 | 63 70 73 | 3eqtr4d | |- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) /\ C = -oo ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |
| 75 | simpl3 | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> C e. RR* ) |
|
| 76 | elxr | |- ( C e. RR* <-> ( C e. RR \/ C = +oo \/ C = -oo ) ) |
|
| 77 | 75 76 | sylib | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> ( C e. RR \/ C = +oo \/ C = -oo ) ) |
| 78 | 77 | adantr | |- ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) -> ( C e. RR \/ C = +oo \/ C = -oo ) ) |
| 79 | 27 53 74 78 | mpjao3dan | |- ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B e. RR ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |
| 80 | 31 | ad2antrr | |- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C e. RR ) -> ( A *e +oo ) = +oo ) |
| 81 | 1 | adantr | |- ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) -> A e. RR ) |
| 82 | 23 14 | eqeltrd | |- ( ( A e. RR /\ C e. RR ) -> ( A *e C ) e. RR ) |
| 83 | 81 82 | sylan | |- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C e. RR ) -> ( A *e C ) e. RR ) |
| 84 | rexr | |- ( ( A *e C ) e. RR -> ( A *e C ) e. RR* ) |
|
| 85 | renemnf | |- ( ( A *e C ) e. RR -> ( A *e C ) =/= -oo ) |
|
| 86 | xaddpnf2 | |- ( ( ( A *e C ) e. RR* /\ ( A *e C ) =/= -oo ) -> ( +oo +e ( A *e C ) ) = +oo ) |
|
| 87 | 84 85 86 | syl2anc | |- ( ( A *e C ) e. RR -> ( +oo +e ( A *e C ) ) = +oo ) |
| 88 | 83 87 | syl | |- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C e. RR ) -> ( +oo +e ( A *e C ) ) = +oo ) |
| 89 | 80 88 | eqtr4d | |- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C e. RR ) -> ( A *e +oo ) = ( +oo +e ( A *e C ) ) ) |
| 90 | simpr | |- ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) -> B = +oo ) |
|
| 91 | 90 | oveq1d | |- ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) -> ( B +e C ) = ( +oo +e C ) ) |
| 92 | rexr | |- ( C e. RR -> C e. RR* ) |
|
| 93 | renemnf | |- ( C e. RR -> C =/= -oo ) |
|
| 94 | xaddpnf2 | |- ( ( C e. RR* /\ C =/= -oo ) -> ( +oo +e C ) = +oo ) |
|
| 95 | 92 93 94 | syl2anc | |- ( C e. RR -> ( +oo +e C ) = +oo ) |
| 96 | 91 95 | sylan9eq | |- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C e. RR ) -> ( B +e C ) = +oo ) |
| 97 | 96 | oveq2d | |- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C e. RR ) -> ( A *e ( B +e C ) ) = ( A *e +oo ) ) |
| 98 | oveq2 | |- ( B = +oo -> ( A *e B ) = ( A *e +oo ) ) |
|
| 99 | 98 31 | sylan9eqr | |- ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) -> ( A *e B ) = +oo ) |
| 100 | 99 | adantr | |- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C e. RR ) -> ( A *e B ) = +oo ) |
| 101 | 100 | oveq1d | |- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C e. RR ) -> ( ( A *e B ) +e ( A *e C ) ) = ( +oo +e ( A *e C ) ) ) |
| 102 | 89 97 101 | 3eqtr4d | |- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C e. RR ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |
| 103 | pnfxr | |- +oo e. RR* |
|
| 104 | pnfnemnf | |- +oo =/= -oo |
|
| 105 | xaddpnf1 | |- ( ( +oo e. RR* /\ +oo =/= -oo ) -> ( +oo +e +oo ) = +oo ) |
|
| 106 | 103 104 105 | mp2an | |- ( +oo +e +oo ) = +oo |
| 107 | 31 31 | oveq12d | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> ( ( A *e +oo ) +e ( A *e +oo ) ) = ( +oo +e +oo ) ) |
| 108 | 106 107 31 | 3eqtr4a | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> ( ( A *e +oo ) +e ( A *e +oo ) ) = ( A *e +oo ) ) |
| 109 | 108 | ad2antrr | |- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C = +oo ) -> ( ( A *e +oo ) +e ( A *e +oo ) ) = ( A *e +oo ) ) |
| 110 | 98 50 | oveqan12d | |- ( ( B = +oo /\ C = +oo ) -> ( ( A *e B ) +e ( A *e C ) ) = ( ( A *e +oo ) +e ( A *e +oo ) ) ) |
| 111 | 110 | adantll | |- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C = +oo ) -> ( ( A *e B ) +e ( A *e C ) ) = ( ( A *e +oo ) +e ( A *e +oo ) ) ) |
| 112 | oveq12 | |- ( ( B = +oo /\ C = +oo ) -> ( B +e C ) = ( +oo +e +oo ) ) |
|
| 113 | 112 106 | eqtrdi | |- ( ( B = +oo /\ C = +oo ) -> ( B +e C ) = +oo ) |
| 114 | 113 | oveq2d | |- ( ( B = +oo /\ C = +oo ) -> ( A *e ( B +e C ) ) = ( A *e +oo ) ) |
| 115 | 114 | adantll | |- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C = +oo ) -> ( A *e ( B +e C ) ) = ( A *e +oo ) ) |
| 116 | 109 111 115 | 3eqtr4rd | |- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C = +oo ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |
| 117 | pnfaddmnf | |- ( +oo +e -oo ) = 0 |
|
| 118 | 31 55 | oveq12d | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> ( ( A *e +oo ) +e ( A *e -oo ) ) = ( +oo +e -oo ) ) |
| 119 | xmul01 | |- ( A e. RR* -> ( A *e 0 ) = 0 ) |
|
| 120 | 1 28 119 | 3syl | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> ( A *e 0 ) = 0 ) |
| 121 | 117 118 120 | 3eqtr4a | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> ( ( A *e +oo ) +e ( A *e -oo ) ) = ( A *e 0 ) ) |
| 122 | 121 | ad2antrr | |- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C = -oo ) -> ( ( A *e +oo ) +e ( A *e -oo ) ) = ( A *e 0 ) ) |
| 123 | 98 71 | oveqan12d | |- ( ( B = +oo /\ C = -oo ) -> ( ( A *e B ) +e ( A *e C ) ) = ( ( A *e +oo ) +e ( A *e -oo ) ) ) |
| 124 | 123 | adantll | |- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C = -oo ) -> ( ( A *e B ) +e ( A *e C ) ) = ( ( A *e +oo ) +e ( A *e -oo ) ) ) |
| 125 | oveq12 | |- ( ( B = +oo /\ C = -oo ) -> ( B +e C ) = ( +oo +e -oo ) ) |
|
| 126 | 125 117 | eqtrdi | |- ( ( B = +oo /\ C = -oo ) -> ( B +e C ) = 0 ) |
| 127 | 126 | oveq2d | |- ( ( B = +oo /\ C = -oo ) -> ( A *e ( B +e C ) ) = ( A *e 0 ) ) |
| 128 | 127 | adantll | |- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C = -oo ) -> ( A *e ( B +e C ) ) = ( A *e 0 ) ) |
| 129 | 122 124 128 | 3eqtr4rd | |- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) /\ C = -oo ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |
| 130 | 77 | adantr | |- ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) -> ( C e. RR \/ C = +oo \/ C = -oo ) ) |
| 131 | 102 116 129 130 | mpjao3dan | |- ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = +oo ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |
| 132 | 55 | ad2antrr | |- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C e. RR ) -> ( A *e -oo ) = -oo ) |
| 133 | 1 | adantr | |- ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) -> A e. RR ) |
| 134 | 133 82 | sylan | |- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C e. RR ) -> ( A *e C ) e. RR ) |
| 135 | renepnf | |- ( ( A *e C ) e. RR -> ( A *e C ) =/= +oo ) |
|
| 136 | xaddmnf2 | |- ( ( ( A *e C ) e. RR* /\ ( A *e C ) =/= +oo ) -> ( -oo +e ( A *e C ) ) = -oo ) |
|
| 137 | 84 135 136 | syl2anc | |- ( ( A *e C ) e. RR -> ( -oo +e ( A *e C ) ) = -oo ) |
| 138 | 134 137 | syl | |- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C e. RR ) -> ( -oo +e ( A *e C ) ) = -oo ) |
| 139 | 132 138 | eqtr4d | |- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C e. RR ) -> ( A *e -oo ) = ( -oo +e ( A *e C ) ) ) |
| 140 | simpr | |- ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) -> B = -oo ) |
|
| 141 | 140 | oveq1d | |- ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) -> ( B +e C ) = ( -oo +e C ) ) |
| 142 | renepnf | |- ( C e. RR -> C =/= +oo ) |
|
| 143 | xaddmnf2 | |- ( ( C e. RR* /\ C =/= +oo ) -> ( -oo +e C ) = -oo ) |
|
| 144 | 92 142 143 | syl2anc | |- ( C e. RR -> ( -oo +e C ) = -oo ) |
| 145 | 141 144 | sylan9eq | |- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C e. RR ) -> ( B +e C ) = -oo ) |
| 146 | 145 | oveq2d | |- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C e. RR ) -> ( A *e ( B +e C ) ) = ( A *e -oo ) ) |
| 147 | oveq2 | |- ( B = -oo -> ( A *e B ) = ( A *e -oo ) ) |
|
| 148 | 147 55 | sylan9eqr | |- ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) -> ( A *e B ) = -oo ) |
| 149 | 148 | adantr | |- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C e. RR ) -> ( A *e B ) = -oo ) |
| 150 | 149 | oveq1d | |- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C e. RR ) -> ( ( A *e B ) +e ( A *e C ) ) = ( -oo +e ( A *e C ) ) ) |
| 151 | 139 146 150 | 3eqtr4d | |- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C e. RR ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |
| 152 | 55 31 | oveq12d | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> ( ( A *e -oo ) +e ( A *e +oo ) ) = ( -oo +e +oo ) ) |
| 153 | mnfaddpnf | |- ( -oo +e +oo ) = 0 |
|
| 154 | 152 153 | eqtrdi | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> ( ( A *e -oo ) +e ( A *e +oo ) ) = 0 ) |
| 155 | 120 154 | eqtr4d | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> ( A *e 0 ) = ( ( A *e -oo ) +e ( A *e +oo ) ) ) |
| 156 | 155 | ad2antrr | |- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C = +oo ) -> ( A *e 0 ) = ( ( A *e -oo ) +e ( A *e +oo ) ) ) |
| 157 | oveq12 | |- ( ( B = -oo /\ C = +oo ) -> ( B +e C ) = ( -oo +e +oo ) ) |
|
| 158 | 157 153 | eqtrdi | |- ( ( B = -oo /\ C = +oo ) -> ( B +e C ) = 0 ) |
| 159 | 158 | oveq2d | |- ( ( B = -oo /\ C = +oo ) -> ( A *e ( B +e C ) ) = ( A *e 0 ) ) |
| 160 | 159 | adantll | |- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C = +oo ) -> ( A *e ( B +e C ) ) = ( A *e 0 ) ) |
| 161 | 147 50 | oveqan12d | |- ( ( B = -oo /\ C = +oo ) -> ( ( A *e B ) +e ( A *e C ) ) = ( ( A *e -oo ) +e ( A *e +oo ) ) ) |
| 162 | 161 | adantll | |- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C = +oo ) -> ( ( A *e B ) +e ( A *e C ) ) = ( ( A *e -oo ) +e ( A *e +oo ) ) ) |
| 163 | 156 160 162 | 3eqtr4d | |- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C = +oo ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |
| 164 | mnfxr | |- -oo e. RR* |
|
| 165 | mnfnepnf | |- -oo =/= +oo |
|
| 166 | xaddmnf1 | |- ( ( -oo e. RR* /\ -oo =/= +oo ) -> ( -oo +e -oo ) = -oo ) |
|
| 167 | 164 165 166 | mp2an | |- ( -oo +e -oo ) = -oo |
| 168 | 55 55 | oveq12d | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> ( ( A *e -oo ) +e ( A *e -oo ) ) = ( -oo +e -oo ) ) |
| 169 | 167 168 55 | 3eqtr4a | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> ( ( A *e -oo ) +e ( A *e -oo ) ) = ( A *e -oo ) ) |
| 170 | 169 | ad2antrr | |- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C = -oo ) -> ( ( A *e -oo ) +e ( A *e -oo ) ) = ( A *e -oo ) ) |
| 171 | 147 71 | oveqan12d | |- ( ( B = -oo /\ C = -oo ) -> ( ( A *e B ) +e ( A *e C ) ) = ( ( A *e -oo ) +e ( A *e -oo ) ) ) |
| 172 | 171 | adantll | |- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C = -oo ) -> ( ( A *e B ) +e ( A *e C ) ) = ( ( A *e -oo ) +e ( A *e -oo ) ) ) |
| 173 | oveq12 | |- ( ( B = -oo /\ C = -oo ) -> ( B +e C ) = ( -oo +e -oo ) ) |
|
| 174 | 173 167 | eqtrdi | |- ( ( B = -oo /\ C = -oo ) -> ( B +e C ) = -oo ) |
| 175 | 174 | oveq2d | |- ( ( B = -oo /\ C = -oo ) -> ( A *e ( B +e C ) ) = ( A *e -oo ) ) |
| 176 | 175 | adantll | |- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C = -oo ) -> ( A *e ( B +e C ) ) = ( A *e -oo ) ) |
| 177 | 170 172 176 | 3eqtr4rd | |- ( ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) /\ C = -oo ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |
| 178 | 77 | adantr | |- ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) -> ( C e. RR \/ C = +oo \/ C = -oo ) ) |
| 179 | 151 163 177 178 | mpjao3dan | |- ( ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) /\ B = -oo ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |
| 180 | simpl2 | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> B e. RR* ) |
|
| 181 | elxr | |- ( B e. RR* <-> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
|
| 182 | 180 181 | sylib | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
| 183 | 79 131 179 182 | mpjao3dan | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |