This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication by minus infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xmulmnf1 | |- ( ( A e. RR* /\ 0 < A ) -> ( A *e -oo ) = -oo ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xnegpnf | |- -e +oo = -oo |
|
| 2 | 1 | oveq2i | |- ( A *e -e +oo ) = ( A *e -oo ) |
| 3 | simpl | |- ( ( A e. RR* /\ 0 < A ) -> A e. RR* ) |
|
| 4 | pnfxr | |- +oo e. RR* |
|
| 5 | xmulneg2 | |- ( ( A e. RR* /\ +oo e. RR* ) -> ( A *e -e +oo ) = -e ( A *e +oo ) ) |
|
| 6 | 3 4 5 | sylancl | |- ( ( A e. RR* /\ 0 < A ) -> ( A *e -e +oo ) = -e ( A *e +oo ) ) |
| 7 | xmulpnf1 | |- ( ( A e. RR* /\ 0 < A ) -> ( A *e +oo ) = +oo ) |
|
| 8 | xnegeq | |- ( ( A *e +oo ) = +oo -> -e ( A *e +oo ) = -e +oo ) |
|
| 9 | 7 8 | syl | |- ( ( A e. RR* /\ 0 < A ) -> -e ( A *e +oo ) = -e +oo ) |
| 10 | 9 1 | eqtrdi | |- ( ( A e. RR* /\ 0 < A ) -> -e ( A *e +oo ) = -oo ) |
| 11 | 6 10 | eqtrd | |- ( ( A e. RR* /\ 0 < A ) -> ( A *e -e +oo ) = -oo ) |
| 12 | 2 11 | eqtr3id | |- ( ( A e. RR* /\ 0 < A ) -> ( A *e -oo ) = -oo ) |