This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive property for extended real addition and multiplication. Like xaddass , this has an unusual domain of correctness due to counterexamples like ( +oo x. ( 2 - 1 ) ) = -oo =/= ( ( +oo x. 2 ) - ( +oo x. 1 ) ) = ( +oo - +oo ) = 0 . In this theorem we show that if the multiplier is real then everything works as expected. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xadddi | |- ( ( A e. RR /\ B e. RR* /\ C e. RR* ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xadddilem | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < A ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |
|
| 2 | simpl2 | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 = A ) -> B e. RR* ) |
|
| 3 | simpl3 | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 = A ) -> C e. RR* ) |
|
| 4 | xaddcl | |- ( ( B e. RR* /\ C e. RR* ) -> ( B +e C ) e. RR* ) |
|
| 5 | 2 3 4 | syl2anc | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 = A ) -> ( B +e C ) e. RR* ) |
| 6 | xmul02 | |- ( ( B +e C ) e. RR* -> ( 0 *e ( B +e C ) ) = 0 ) |
|
| 7 | 5 6 | syl | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 = A ) -> ( 0 *e ( B +e C ) ) = 0 ) |
| 8 | 0xr | |- 0 e. RR* |
|
| 9 | xaddrid | |- ( 0 e. RR* -> ( 0 +e 0 ) = 0 ) |
|
| 10 | 8 9 | ax-mp | |- ( 0 +e 0 ) = 0 |
| 11 | 7 10 | eqtr4di | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 = A ) -> ( 0 *e ( B +e C ) ) = ( 0 +e 0 ) ) |
| 12 | simpr | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 = A ) -> 0 = A ) |
|
| 13 | 12 | oveq1d | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 = A ) -> ( 0 *e ( B +e C ) ) = ( A *e ( B +e C ) ) ) |
| 14 | xmul02 | |- ( B e. RR* -> ( 0 *e B ) = 0 ) |
|
| 15 | 2 14 | syl | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 = A ) -> ( 0 *e B ) = 0 ) |
| 16 | 12 | oveq1d | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 = A ) -> ( 0 *e B ) = ( A *e B ) ) |
| 17 | 15 16 | eqtr3d | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 = A ) -> 0 = ( A *e B ) ) |
| 18 | xmul02 | |- ( C e. RR* -> ( 0 *e C ) = 0 ) |
|
| 19 | 3 18 | syl | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 = A ) -> ( 0 *e C ) = 0 ) |
| 20 | 12 | oveq1d | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 = A ) -> ( 0 *e C ) = ( A *e C ) ) |
| 21 | 19 20 | eqtr3d | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 = A ) -> 0 = ( A *e C ) ) |
| 22 | 17 21 | oveq12d | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 = A ) -> ( 0 +e 0 ) = ( ( A *e B ) +e ( A *e C ) ) ) |
| 23 | 11 13 22 | 3eqtr3d | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 = A ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |
| 24 | simp1 | |- ( ( A e. RR /\ B e. RR* /\ C e. RR* ) -> A e. RR ) |
|
| 25 | 24 | adantr | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> A e. RR ) |
| 26 | rexneg | |- ( A e. RR -> -e A = -u A ) |
|
| 27 | renegcl | |- ( A e. RR -> -u A e. RR ) |
|
| 28 | 26 27 | eqeltrd | |- ( A e. RR -> -e A e. RR ) |
| 29 | 25 28 | syl | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> -e A e. RR ) |
| 30 | simpl2 | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> B e. RR* ) |
|
| 31 | simpl3 | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> C e. RR* ) |
|
| 32 | 24 | rexrd | |- ( ( A e. RR /\ B e. RR* /\ C e. RR* ) -> A e. RR* ) |
| 33 | xlt0neg1 | |- ( A e. RR* -> ( A < 0 <-> 0 < -e A ) ) |
|
| 34 | 32 33 | syl | |- ( ( A e. RR /\ B e. RR* /\ C e. RR* ) -> ( A < 0 <-> 0 < -e A ) ) |
| 35 | 34 | biimpa | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> 0 < -e A ) |
| 36 | xadddilem | |- ( ( ( -e A e. RR /\ B e. RR* /\ C e. RR* ) /\ 0 < -e A ) -> ( -e A *e ( B +e C ) ) = ( ( -e A *e B ) +e ( -e A *e C ) ) ) |
|
| 37 | 29 30 31 35 36 | syl31anc | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> ( -e A *e ( B +e C ) ) = ( ( -e A *e B ) +e ( -e A *e C ) ) ) |
| 38 | 32 | adantr | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> A e. RR* ) |
| 39 | 30 31 4 | syl2anc | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> ( B +e C ) e. RR* ) |
| 40 | xmulneg1 | |- ( ( A e. RR* /\ ( B +e C ) e. RR* ) -> ( -e A *e ( B +e C ) ) = -e ( A *e ( B +e C ) ) ) |
|
| 41 | 38 39 40 | syl2anc | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> ( -e A *e ( B +e C ) ) = -e ( A *e ( B +e C ) ) ) |
| 42 | xmulneg1 | |- ( ( A e. RR* /\ B e. RR* ) -> ( -e A *e B ) = -e ( A *e B ) ) |
|
| 43 | 38 30 42 | syl2anc | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> ( -e A *e B ) = -e ( A *e B ) ) |
| 44 | xmulneg1 | |- ( ( A e. RR* /\ C e. RR* ) -> ( -e A *e C ) = -e ( A *e C ) ) |
|
| 45 | 38 31 44 | syl2anc | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> ( -e A *e C ) = -e ( A *e C ) ) |
| 46 | 43 45 | oveq12d | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> ( ( -e A *e B ) +e ( -e A *e C ) ) = ( -e ( A *e B ) +e -e ( A *e C ) ) ) |
| 47 | xmulcl | |- ( ( A e. RR* /\ B e. RR* ) -> ( A *e B ) e. RR* ) |
|
| 48 | 38 30 47 | syl2anc | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> ( A *e B ) e. RR* ) |
| 49 | xmulcl | |- ( ( A e. RR* /\ C e. RR* ) -> ( A *e C ) e. RR* ) |
|
| 50 | 38 31 49 | syl2anc | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> ( A *e C ) e. RR* ) |
| 51 | xnegdi | |- ( ( ( A *e B ) e. RR* /\ ( A *e C ) e. RR* ) -> -e ( ( A *e B ) +e ( A *e C ) ) = ( -e ( A *e B ) +e -e ( A *e C ) ) ) |
|
| 52 | 48 50 51 | syl2anc | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> -e ( ( A *e B ) +e ( A *e C ) ) = ( -e ( A *e B ) +e -e ( A *e C ) ) ) |
| 53 | 46 52 | eqtr4d | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> ( ( -e A *e B ) +e ( -e A *e C ) ) = -e ( ( A *e B ) +e ( A *e C ) ) ) |
| 54 | 37 41 53 | 3eqtr3d | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> -e ( A *e ( B +e C ) ) = -e ( ( A *e B ) +e ( A *e C ) ) ) |
| 55 | xmulcl | |- ( ( A e. RR* /\ ( B +e C ) e. RR* ) -> ( A *e ( B +e C ) ) e. RR* ) |
|
| 56 | 38 39 55 | syl2anc | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> ( A *e ( B +e C ) ) e. RR* ) |
| 57 | xaddcl | |- ( ( ( A *e B ) e. RR* /\ ( A *e C ) e. RR* ) -> ( ( A *e B ) +e ( A *e C ) ) e. RR* ) |
|
| 58 | 48 50 57 | syl2anc | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> ( ( A *e B ) +e ( A *e C ) ) e. RR* ) |
| 59 | xneg11 | |- ( ( ( A *e ( B +e C ) ) e. RR* /\ ( ( A *e B ) +e ( A *e C ) ) e. RR* ) -> ( -e ( A *e ( B +e C ) ) = -e ( ( A *e B ) +e ( A *e C ) ) <-> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) ) |
|
| 60 | 56 58 59 | syl2anc | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> ( -e ( A *e ( B +e C ) ) = -e ( ( A *e B ) +e ( A *e C ) ) <-> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) ) |
| 61 | 54 60 | mpbid | |- ( ( ( A e. RR /\ B e. RR* /\ C e. RR* ) /\ A < 0 ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |
| 62 | 0re | |- 0 e. RR |
|
| 63 | lttri4 | |- ( ( 0 e. RR /\ A e. RR ) -> ( 0 < A \/ 0 = A \/ A < 0 ) ) |
|
| 64 | 62 24 63 | sylancr | |- ( ( A e. RR /\ B e. RR* /\ C e. RR* ) -> ( 0 < A \/ 0 = A \/ A < 0 ) ) |
| 65 | 1 23 61 64 | mpjao3dan | |- ( ( A e. RR /\ B e. RR* /\ C e. RR* ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |