This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The assumption that the multiplier be real in xadddi can be relaxed if the addends have the same sign. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xadddi2 | |- ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) /\ A e. RR ) -> A e. RR ) |
|
| 2 | simp2l | |- ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) -> B e. RR* ) |
|
| 3 | 2 | ad2antrr | |- ( ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) /\ A e. RR ) -> B e. RR* ) |
| 4 | simp3l | |- ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) -> C e. RR* ) |
|
| 5 | 4 | ad2antrr | |- ( ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) /\ A e. RR ) -> C e. RR* ) |
| 6 | xadddi | |- ( ( A e. RR /\ B e. RR* /\ C e. RR* ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |
|
| 7 | 1 3 5 6 | syl3anc | |- ( ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) /\ A e. RR ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |
| 8 | pnfxr | |- +oo e. RR* |
|
| 9 | 4 | adantr | |- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> C e. RR* ) |
| 10 | xmulcl | |- ( ( +oo e. RR* /\ C e. RR* ) -> ( +oo *e C ) e. RR* ) |
|
| 11 | 8 9 10 | sylancr | |- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> ( +oo *e C ) e. RR* ) |
| 12 | simpl3r | |- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> 0 <_ C ) |
|
| 13 | 0lepnf | |- 0 <_ +oo |
|
| 14 | xmulge0 | |- ( ( ( +oo e. RR* /\ 0 <_ +oo ) /\ ( C e. RR* /\ 0 <_ C ) ) -> 0 <_ ( +oo *e C ) ) |
|
| 15 | 8 13 14 | mpanl12 | |- ( ( C e. RR* /\ 0 <_ C ) -> 0 <_ ( +oo *e C ) ) |
| 16 | 4 12 15 | syl2an2r | |- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> 0 <_ ( +oo *e C ) ) |
| 17 | ge0nemnf | |- ( ( ( +oo *e C ) e. RR* /\ 0 <_ ( +oo *e C ) ) -> ( +oo *e C ) =/= -oo ) |
|
| 18 | 11 16 17 | syl2anc | |- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> ( +oo *e C ) =/= -oo ) |
| 19 | 18 | adantr | |- ( ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) /\ A = +oo ) -> ( +oo *e C ) =/= -oo ) |
| 20 | xaddpnf2 | |- ( ( ( +oo *e C ) e. RR* /\ ( +oo *e C ) =/= -oo ) -> ( +oo +e ( +oo *e C ) ) = +oo ) |
|
| 21 | 11 19 20 | syl2an2r | |- ( ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) /\ A = +oo ) -> ( +oo +e ( +oo *e C ) ) = +oo ) |
| 22 | oveq1 | |- ( A = +oo -> ( A *e B ) = ( +oo *e B ) ) |
|
| 23 | oveq1 | |- ( A = +oo -> ( A *e C ) = ( +oo *e C ) ) |
|
| 24 | 22 23 | oveq12d | |- ( A = +oo -> ( ( A *e B ) +e ( A *e C ) ) = ( ( +oo *e B ) +e ( +oo *e C ) ) ) |
| 25 | xmulpnf2 | |- ( ( B e. RR* /\ 0 < B ) -> ( +oo *e B ) = +oo ) |
|
| 26 | 2 25 | sylan | |- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> ( +oo *e B ) = +oo ) |
| 27 | 26 | oveq1d | |- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> ( ( +oo *e B ) +e ( +oo *e C ) ) = ( +oo +e ( +oo *e C ) ) ) |
| 28 | 24 27 | sylan9eqr | |- ( ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) /\ A = +oo ) -> ( ( A *e B ) +e ( A *e C ) ) = ( +oo +e ( +oo *e C ) ) ) |
| 29 | oveq1 | |- ( A = +oo -> ( A *e ( B +e C ) ) = ( +oo *e ( B +e C ) ) ) |
|
| 30 | xaddcl | |- ( ( B e. RR* /\ C e. RR* ) -> ( B +e C ) e. RR* ) |
|
| 31 | 2 4 30 | syl2anc | |- ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) -> ( B +e C ) e. RR* ) |
| 32 | 0xr | |- 0 e. RR* |
|
| 33 | 32 | a1i | |- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> 0 e. RR* ) |
| 34 | 2 | adantr | |- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> B e. RR* ) |
| 35 | 31 | adantr | |- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> ( B +e C ) e. RR* ) |
| 36 | simpr | |- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> 0 < B ) |
|
| 37 | 34 | xaddridd | |- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> ( B +e 0 ) = B ) |
| 38 | xleadd2a | |- ( ( ( 0 e. RR* /\ C e. RR* /\ B e. RR* ) /\ 0 <_ C ) -> ( B +e 0 ) <_ ( B +e C ) ) |
|
| 39 | 33 9 34 12 38 | syl31anc | |- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> ( B +e 0 ) <_ ( B +e C ) ) |
| 40 | 37 39 | eqbrtrrd | |- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> B <_ ( B +e C ) ) |
| 41 | 33 34 35 36 40 | xrltletrd | |- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> 0 < ( B +e C ) ) |
| 42 | xmulpnf2 | |- ( ( ( B +e C ) e. RR* /\ 0 < ( B +e C ) ) -> ( +oo *e ( B +e C ) ) = +oo ) |
|
| 43 | 31 41 42 | syl2an2r | |- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> ( +oo *e ( B +e C ) ) = +oo ) |
| 44 | 29 43 | sylan9eqr | |- ( ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) /\ A = +oo ) -> ( A *e ( B +e C ) ) = +oo ) |
| 45 | 21 28 44 | 3eqtr4rd | |- ( ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) /\ A = +oo ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |
| 46 | mnfxr | |- -oo e. RR* |
|
| 47 | xmulcl | |- ( ( -oo e. RR* /\ C e. RR* ) -> ( -oo *e C ) e. RR* ) |
|
| 48 | 46 9 47 | sylancr | |- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> ( -oo *e C ) e. RR* ) |
| 49 | xmulneg1 | |- ( ( -oo e. RR* /\ C e. RR* ) -> ( -e -oo *e C ) = -e ( -oo *e C ) ) |
|
| 50 | 46 9 49 | sylancr | |- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> ( -e -oo *e C ) = -e ( -oo *e C ) ) |
| 51 | xnegmnf | |- -e -oo = +oo |
|
| 52 | 51 | oveq1i | |- ( -e -oo *e C ) = ( +oo *e C ) |
| 53 | 50 52 | eqtr3di | |- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> -e ( -oo *e C ) = ( +oo *e C ) ) |
| 54 | xnegpnf | |- -e +oo = -oo |
|
| 55 | 54 | a1i | |- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> -e +oo = -oo ) |
| 56 | 53 55 | eqeq12d | |- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> ( -e ( -oo *e C ) = -e +oo <-> ( +oo *e C ) = -oo ) ) |
| 57 | xneg11 | |- ( ( ( -oo *e C ) e. RR* /\ +oo e. RR* ) -> ( -e ( -oo *e C ) = -e +oo <-> ( -oo *e C ) = +oo ) ) |
|
| 58 | 48 8 57 | sylancl | |- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> ( -e ( -oo *e C ) = -e +oo <-> ( -oo *e C ) = +oo ) ) |
| 59 | 56 58 | bitr3d | |- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> ( ( +oo *e C ) = -oo <-> ( -oo *e C ) = +oo ) ) |
| 60 | 59 | necon3bid | |- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> ( ( +oo *e C ) =/= -oo <-> ( -oo *e C ) =/= +oo ) ) |
| 61 | 18 60 | mpbid | |- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> ( -oo *e C ) =/= +oo ) |
| 62 | xaddmnf2 | |- ( ( ( -oo *e C ) e. RR* /\ ( -oo *e C ) =/= +oo ) -> ( -oo +e ( -oo *e C ) ) = -oo ) |
|
| 63 | 48 61 62 | syl2anc | |- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> ( -oo +e ( -oo *e C ) ) = -oo ) |
| 64 | 63 | adantr | |- ( ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) /\ A = -oo ) -> ( -oo +e ( -oo *e C ) ) = -oo ) |
| 65 | oveq1 | |- ( A = -oo -> ( A *e B ) = ( -oo *e B ) ) |
|
| 66 | oveq1 | |- ( A = -oo -> ( A *e C ) = ( -oo *e C ) ) |
|
| 67 | 65 66 | oveq12d | |- ( A = -oo -> ( ( A *e B ) +e ( A *e C ) ) = ( ( -oo *e B ) +e ( -oo *e C ) ) ) |
| 68 | xmulmnf2 | |- ( ( B e. RR* /\ 0 < B ) -> ( -oo *e B ) = -oo ) |
|
| 69 | 2 68 | sylan | |- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> ( -oo *e B ) = -oo ) |
| 70 | 69 | oveq1d | |- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> ( ( -oo *e B ) +e ( -oo *e C ) ) = ( -oo +e ( -oo *e C ) ) ) |
| 71 | 67 70 | sylan9eqr | |- ( ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) /\ A = -oo ) -> ( ( A *e B ) +e ( A *e C ) ) = ( -oo +e ( -oo *e C ) ) ) |
| 72 | oveq1 | |- ( A = -oo -> ( A *e ( B +e C ) ) = ( -oo *e ( B +e C ) ) ) |
|
| 73 | xmulmnf2 | |- ( ( ( B +e C ) e. RR* /\ 0 < ( B +e C ) ) -> ( -oo *e ( B +e C ) ) = -oo ) |
|
| 74 | 31 41 73 | syl2an2r | |- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> ( -oo *e ( B +e C ) ) = -oo ) |
| 75 | 72 74 | sylan9eqr | |- ( ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) /\ A = -oo ) -> ( A *e ( B +e C ) ) = -oo ) |
| 76 | 64 71 75 | 3eqtr4rd | |- ( ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) /\ A = -oo ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |
| 77 | simpl1 | |- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> A e. RR* ) |
|
| 78 | elxr | |- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
|
| 79 | 77 78 | sylib | |- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
| 80 | 7 45 76 79 | mpjao3dan | |- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 < B ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |
| 81 | simp1 | |- ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) -> A e. RR* ) |
|
| 82 | xmulcl | |- ( ( A e. RR* /\ C e. RR* ) -> ( A *e C ) e. RR* ) |
|
| 83 | 81 4 82 | syl2anc | |- ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) -> ( A *e C ) e. RR* ) |
| 84 | 83 | adantr | |- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 = B ) -> ( A *e C ) e. RR* ) |
| 85 | xaddlid | |- ( ( A *e C ) e. RR* -> ( 0 +e ( A *e C ) ) = ( A *e C ) ) |
|
| 86 | 84 85 | syl | |- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 = B ) -> ( 0 +e ( A *e C ) ) = ( A *e C ) ) |
| 87 | oveq2 | |- ( 0 = B -> ( A *e 0 ) = ( A *e B ) ) |
|
| 88 | 87 | eqcomd | |- ( 0 = B -> ( A *e B ) = ( A *e 0 ) ) |
| 89 | xmul01 | |- ( A e. RR* -> ( A *e 0 ) = 0 ) |
|
| 90 | 89 | 3ad2ant1 | |- ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) -> ( A *e 0 ) = 0 ) |
| 91 | 88 90 | sylan9eqr | |- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 = B ) -> ( A *e B ) = 0 ) |
| 92 | 91 | oveq1d | |- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 = B ) -> ( ( A *e B ) +e ( A *e C ) ) = ( 0 +e ( A *e C ) ) ) |
| 93 | oveq1 | |- ( 0 = B -> ( 0 +e C ) = ( B +e C ) ) |
|
| 94 | 93 | eqcomd | |- ( 0 = B -> ( B +e C ) = ( 0 +e C ) ) |
| 95 | xaddlid | |- ( C e. RR* -> ( 0 +e C ) = C ) |
|
| 96 | 4 95 | syl | |- ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) -> ( 0 +e C ) = C ) |
| 97 | 94 96 | sylan9eqr | |- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 = B ) -> ( B +e C ) = C ) |
| 98 | 97 | oveq2d | |- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 = B ) -> ( A *e ( B +e C ) ) = ( A *e C ) ) |
| 99 | 86 92 98 | 3eqtr4rd | |- ( ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) /\ 0 = B ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |
| 100 | simp2r | |- ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) -> 0 <_ B ) |
|
| 101 | xrleloe | |- ( ( 0 e. RR* /\ B e. RR* ) -> ( 0 <_ B <-> ( 0 < B \/ 0 = B ) ) ) |
|
| 102 | 32 2 101 | sylancr | |- ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) -> ( 0 <_ B <-> ( 0 < B \/ 0 = B ) ) ) |
| 103 | 100 102 | mpbid | |- ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) -> ( 0 < B \/ 0 = B ) ) |
| 104 | 80 99 103 | mpjaodan | |- ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) /\ ( C e. RR* /\ 0 <_ C ) ) -> ( A *e ( B +e C ) ) = ( ( A *e B ) +e ( A *e C ) ) ) |