This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended real version of mulge0 . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xmulge0 | |- ( ( ( A e. RR* /\ 0 <_ A ) /\ ( B e. RR* /\ 0 <_ B ) ) -> 0 <_ ( A *e B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmulgt0 | |- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) -> 0 < ( A *e B ) ) |
|
| 2 | 1 | an4s | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( 0 < A /\ 0 < B ) ) -> 0 < ( A *e B ) ) |
| 3 | 0xr | |- 0 e. RR* |
|
| 4 | xmulcl | |- ( ( A e. RR* /\ B e. RR* ) -> ( A *e B ) e. RR* ) |
|
| 5 | 4 | adantr | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( 0 < A /\ 0 < B ) ) -> ( A *e B ) e. RR* ) |
| 6 | xrltle | |- ( ( 0 e. RR* /\ ( A *e B ) e. RR* ) -> ( 0 < ( A *e B ) -> 0 <_ ( A *e B ) ) ) |
|
| 7 | 3 5 6 | sylancr | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( 0 < A /\ 0 < B ) ) -> ( 0 < ( A *e B ) -> 0 <_ ( A *e B ) ) ) |
| 8 | 2 7 | mpd | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( 0 < A /\ 0 < B ) ) -> 0 <_ ( A *e B ) ) |
| 9 | 8 | ex | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( 0 < A /\ 0 < B ) -> 0 <_ ( A *e B ) ) ) |
| 10 | 9 | ad2ant2r | |- ( ( ( A e. RR* /\ 0 <_ A ) /\ ( B e. RR* /\ 0 <_ B ) ) -> ( ( 0 < A /\ 0 < B ) -> 0 <_ ( A *e B ) ) ) |
| 11 | 10 | impl | |- ( ( ( ( ( A e. RR* /\ 0 <_ A ) /\ ( B e. RR* /\ 0 <_ B ) ) /\ 0 < A ) /\ 0 < B ) -> 0 <_ ( A *e B ) ) |
| 12 | 0le0 | |- 0 <_ 0 |
|
| 13 | oveq2 | |- ( 0 = B -> ( A *e 0 ) = ( A *e B ) ) |
|
| 14 | 13 | eqcomd | |- ( 0 = B -> ( A *e B ) = ( A *e 0 ) ) |
| 15 | xmul01 | |- ( A e. RR* -> ( A *e 0 ) = 0 ) |
|
| 16 | 15 | ad2antrr | |- ( ( ( A e. RR* /\ 0 <_ A ) /\ ( B e. RR* /\ 0 <_ B ) ) -> ( A *e 0 ) = 0 ) |
| 17 | 14 16 | sylan9eqr | |- ( ( ( ( A e. RR* /\ 0 <_ A ) /\ ( B e. RR* /\ 0 <_ B ) ) /\ 0 = B ) -> ( A *e B ) = 0 ) |
| 18 | 12 17 | breqtrrid | |- ( ( ( ( A e. RR* /\ 0 <_ A ) /\ ( B e. RR* /\ 0 <_ B ) ) /\ 0 = B ) -> 0 <_ ( A *e B ) ) |
| 19 | 18 | adantlr | |- ( ( ( ( ( A e. RR* /\ 0 <_ A ) /\ ( B e. RR* /\ 0 <_ B ) ) /\ 0 < A ) /\ 0 = B ) -> 0 <_ ( A *e B ) ) |
| 20 | xrleloe | |- ( ( 0 e. RR* /\ B e. RR* ) -> ( 0 <_ B <-> ( 0 < B \/ 0 = B ) ) ) |
|
| 21 | 3 20 | mpan | |- ( B e. RR* -> ( 0 <_ B <-> ( 0 < B \/ 0 = B ) ) ) |
| 22 | 21 | biimpa | |- ( ( B e. RR* /\ 0 <_ B ) -> ( 0 < B \/ 0 = B ) ) |
| 23 | 22 | ad2antlr | |- ( ( ( ( A e. RR* /\ 0 <_ A ) /\ ( B e. RR* /\ 0 <_ B ) ) /\ 0 < A ) -> ( 0 < B \/ 0 = B ) ) |
| 24 | 11 19 23 | mpjaodan | |- ( ( ( ( A e. RR* /\ 0 <_ A ) /\ ( B e. RR* /\ 0 <_ B ) ) /\ 0 < A ) -> 0 <_ ( A *e B ) ) |
| 25 | oveq1 | |- ( 0 = A -> ( 0 *e B ) = ( A *e B ) ) |
|
| 26 | 25 | eqcomd | |- ( 0 = A -> ( A *e B ) = ( 0 *e B ) ) |
| 27 | xmul02 | |- ( B e. RR* -> ( 0 *e B ) = 0 ) |
|
| 28 | 27 | ad2antrl | |- ( ( ( A e. RR* /\ 0 <_ A ) /\ ( B e. RR* /\ 0 <_ B ) ) -> ( 0 *e B ) = 0 ) |
| 29 | 26 28 | sylan9eqr | |- ( ( ( ( A e. RR* /\ 0 <_ A ) /\ ( B e. RR* /\ 0 <_ B ) ) /\ 0 = A ) -> ( A *e B ) = 0 ) |
| 30 | 12 29 | breqtrrid | |- ( ( ( ( A e. RR* /\ 0 <_ A ) /\ ( B e. RR* /\ 0 <_ B ) ) /\ 0 = A ) -> 0 <_ ( A *e B ) ) |
| 31 | xrleloe | |- ( ( 0 e. RR* /\ A e. RR* ) -> ( 0 <_ A <-> ( 0 < A \/ 0 = A ) ) ) |
|
| 32 | 3 31 | mpan | |- ( A e. RR* -> ( 0 <_ A <-> ( 0 < A \/ 0 = A ) ) ) |
| 33 | 32 | biimpa | |- ( ( A e. RR* /\ 0 <_ A ) -> ( 0 < A \/ 0 = A ) ) |
| 34 | 33 | adantr | |- ( ( ( A e. RR* /\ 0 <_ A ) /\ ( B e. RR* /\ 0 <_ B ) ) -> ( 0 < A \/ 0 = A ) ) |
| 35 | 24 30 34 | mpjaodan | |- ( ( ( A e. RR* /\ 0 <_ A ) /\ ( B e. RR* /\ 0 <_ B ) ) -> 0 <_ ( A *e B ) ) |