This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commuted version of xadddi2 . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xadddi2r | |- ( ( ( A e. RR* /\ 0 <_ A ) /\ ( B e. RR* /\ 0 <_ B ) /\ C e. RR* ) -> ( ( A +e B ) *e C ) = ( ( A *e C ) +e ( B *e C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xadddi2 | |- ( ( C e. RR* /\ ( A e. RR* /\ 0 <_ A ) /\ ( B e. RR* /\ 0 <_ B ) ) -> ( C *e ( A +e B ) ) = ( ( C *e A ) +e ( C *e B ) ) ) |
|
| 2 | 1 | 3coml | |- ( ( ( A e. RR* /\ 0 <_ A ) /\ ( B e. RR* /\ 0 <_ B ) /\ C e. RR* ) -> ( C *e ( A +e B ) ) = ( ( C *e A ) +e ( C *e B ) ) ) |
| 3 | simp1l | |- ( ( ( A e. RR* /\ 0 <_ A ) /\ ( B e. RR* /\ 0 <_ B ) /\ C e. RR* ) -> A e. RR* ) |
|
| 4 | simp2l | |- ( ( ( A e. RR* /\ 0 <_ A ) /\ ( B e. RR* /\ 0 <_ B ) /\ C e. RR* ) -> B e. RR* ) |
|
| 5 | xaddcl | |- ( ( A e. RR* /\ B e. RR* ) -> ( A +e B ) e. RR* ) |
|
| 6 | 3 4 5 | syl2anc | |- ( ( ( A e. RR* /\ 0 <_ A ) /\ ( B e. RR* /\ 0 <_ B ) /\ C e. RR* ) -> ( A +e B ) e. RR* ) |
| 7 | simp3 | |- ( ( ( A e. RR* /\ 0 <_ A ) /\ ( B e. RR* /\ 0 <_ B ) /\ C e. RR* ) -> C e. RR* ) |
|
| 8 | xmulcom | |- ( ( ( A +e B ) e. RR* /\ C e. RR* ) -> ( ( A +e B ) *e C ) = ( C *e ( A +e B ) ) ) |
|
| 9 | 6 7 8 | syl2anc | |- ( ( ( A e. RR* /\ 0 <_ A ) /\ ( B e. RR* /\ 0 <_ B ) /\ C e. RR* ) -> ( ( A +e B ) *e C ) = ( C *e ( A +e B ) ) ) |
| 10 | xmulcom | |- ( ( A e. RR* /\ C e. RR* ) -> ( A *e C ) = ( C *e A ) ) |
|
| 11 | 3 7 10 | syl2anc | |- ( ( ( A e. RR* /\ 0 <_ A ) /\ ( B e. RR* /\ 0 <_ B ) /\ C e. RR* ) -> ( A *e C ) = ( C *e A ) ) |
| 12 | xmulcom | |- ( ( B e. RR* /\ C e. RR* ) -> ( B *e C ) = ( C *e B ) ) |
|
| 13 | 4 7 12 | syl2anc | |- ( ( ( A e. RR* /\ 0 <_ A ) /\ ( B e. RR* /\ 0 <_ B ) /\ C e. RR* ) -> ( B *e C ) = ( C *e B ) ) |
| 14 | 11 13 | oveq12d | |- ( ( ( A e. RR* /\ 0 <_ A ) /\ ( B e. RR* /\ 0 <_ B ) /\ C e. RR* ) -> ( ( A *e C ) +e ( B *e C ) ) = ( ( C *e A ) +e ( C *e B ) ) ) |
| 15 | 2 9 14 | 3eqtr4d | |- ( ( ( A e. RR* /\ 0 <_ A ) /\ ( B e. RR* /\ 0 <_ B ) /\ C e. RR* ) -> ( ( A +e B ) *e C ) = ( ( A *e C ) +e ( B *e C ) ) ) |