This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commuted form of xleadd1a . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xleadd2a | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) -> ( C +e A ) <_ ( C +e B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xleadd1a | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) -> ( A +e C ) <_ ( B +e C ) ) |
|
| 2 | xaddcom | |- ( ( A e. RR* /\ C e. RR* ) -> ( A +e C ) = ( C +e A ) ) |
|
| 3 | 2 | 3adant2 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( A +e C ) = ( C +e A ) ) |
| 4 | 3 | adantr | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) -> ( A +e C ) = ( C +e A ) ) |
| 5 | xaddcom | |- ( ( B e. RR* /\ C e. RR* ) -> ( B +e C ) = ( C +e B ) ) |
|
| 6 | 5 | 3adant1 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( B +e C ) = ( C +e B ) ) |
| 7 | 6 | adantr | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) -> ( B +e C ) = ( C +e B ) ) |
| 8 | 1 4 7 | 3brtr3d | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) -> ( C +e A ) <_ ( C +e B ) ) |