This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem r19.3rzv

Description: Restricted quantification of wff not containing quantified variable. (Contributed by NM, 10-Mar-1997) Avoid ax-12 . (Revised by TM, 16-Feb-2026)

Ref Expression
Assertion r19.3rzv
|- ( A =/= (/) -> ( ph <-> A. x e. A ph ) )

Proof

Step Hyp Ref Expression
1 ax-1
 |-  ( ph -> ( x e. A -> ph ) )
2 1 ralrimiv
 |-  ( ph -> A. x e. A ph )
3 rspn0
 |-  ( A =/= (/) -> ( A. x e. A ph -> ph ) )
4 2 3 impbid2
 |-  ( A =/= (/) -> ( ph <-> A. x e. A ph ) )