This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any neighborhood of an element in the closure of a subset intersects the subset. Part of proof of Theorem 6.6 of Munkres p. 97. (Contributed by NM, 26-Feb-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | neips.1 | |- X = U. J |
|
| Assertion | neindisj | |- ( ( ( J e. Top /\ S C_ X ) /\ ( P e. ( ( cls ` J ) ` S ) /\ N e. ( ( nei ` J ) ` { P } ) ) ) -> ( N i^i S ) =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neips.1 | |- X = U. J |
|
| 2 | 1 | clsss3 | |- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) C_ X ) |
| 3 | 2 | sseld | |- ( ( J e. Top /\ S C_ X ) -> ( P e. ( ( cls ` J ) ` S ) -> P e. X ) ) |
| 4 | 3 | impr | |- ( ( J e. Top /\ ( S C_ X /\ P e. ( ( cls ` J ) ` S ) ) ) -> P e. X ) |
| 5 | 1 | isneip | |- ( ( J e. Top /\ P e. X ) -> ( N e. ( ( nei ` J ) ` { P } ) <-> ( N C_ X /\ E. g e. J ( P e. g /\ g C_ N ) ) ) ) |
| 6 | 4 5 | syldan | |- ( ( J e. Top /\ ( S C_ X /\ P e. ( ( cls ` J ) ` S ) ) ) -> ( N e. ( ( nei ` J ) ` { P } ) <-> ( N C_ X /\ E. g e. J ( P e. g /\ g C_ N ) ) ) ) |
| 7 | 3anass | |- ( ( J e. Top /\ S C_ X /\ P e. ( ( cls ` J ) ` S ) ) <-> ( J e. Top /\ ( S C_ X /\ P e. ( ( cls ` J ) ` S ) ) ) ) |
|
| 8 | 1 | clsndisj | |- ( ( ( J e. Top /\ S C_ X /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g e. J /\ P e. g ) ) -> ( g i^i S ) =/= (/) ) |
| 9 | 7 8 | sylanbr | |- ( ( ( J e. Top /\ ( S C_ X /\ P e. ( ( cls ` J ) ` S ) ) ) /\ ( g e. J /\ P e. g ) ) -> ( g i^i S ) =/= (/) ) |
| 10 | 9 | anassrs | |- ( ( ( ( J e. Top /\ ( S C_ X /\ P e. ( ( cls ` J ) ` S ) ) ) /\ g e. J ) /\ P e. g ) -> ( g i^i S ) =/= (/) ) |
| 11 | 10 | adantllr | |- ( ( ( ( ( J e. Top /\ ( S C_ X /\ P e. ( ( cls ` J ) ` S ) ) ) /\ N C_ X ) /\ g e. J ) /\ P e. g ) -> ( g i^i S ) =/= (/) ) |
| 12 | 11 | adantrr | |- ( ( ( ( ( J e. Top /\ ( S C_ X /\ P e. ( ( cls ` J ) ` S ) ) ) /\ N C_ X ) /\ g e. J ) /\ ( P e. g /\ g C_ N ) ) -> ( g i^i S ) =/= (/) ) |
| 13 | ssdisj | |- ( ( g C_ N /\ ( N i^i S ) = (/) ) -> ( g i^i S ) = (/) ) |
|
| 14 | 13 | ex | |- ( g C_ N -> ( ( N i^i S ) = (/) -> ( g i^i S ) = (/) ) ) |
| 15 | 14 | necon3d | |- ( g C_ N -> ( ( g i^i S ) =/= (/) -> ( N i^i S ) =/= (/) ) ) |
| 16 | 15 | ad2antll | |- ( ( ( ( ( J e. Top /\ ( S C_ X /\ P e. ( ( cls ` J ) ` S ) ) ) /\ N C_ X ) /\ g e. J ) /\ ( P e. g /\ g C_ N ) ) -> ( ( g i^i S ) =/= (/) -> ( N i^i S ) =/= (/) ) ) |
| 17 | 12 16 | mpd | |- ( ( ( ( ( J e. Top /\ ( S C_ X /\ P e. ( ( cls ` J ) ` S ) ) ) /\ N C_ X ) /\ g e. J ) /\ ( P e. g /\ g C_ N ) ) -> ( N i^i S ) =/= (/) ) |
| 18 | 17 | rexlimdva2 | |- ( ( ( J e. Top /\ ( S C_ X /\ P e. ( ( cls ` J ) ` S ) ) ) /\ N C_ X ) -> ( E. g e. J ( P e. g /\ g C_ N ) -> ( N i^i S ) =/= (/) ) ) |
| 19 | 18 | expimpd | |- ( ( J e. Top /\ ( S C_ X /\ P e. ( ( cls ` J ) ` S ) ) ) -> ( ( N C_ X /\ E. g e. J ( P e. g /\ g C_ N ) ) -> ( N i^i S ) =/= (/) ) ) |
| 20 | 6 19 | sylbid | |- ( ( J e. Top /\ ( S C_ X /\ P e. ( ( cls ` J ) ` S ) ) ) -> ( N e. ( ( nei ` J ) ` { P } ) -> ( N i^i S ) =/= (/) ) ) |
| 21 | 20 | exp32 | |- ( J e. Top -> ( S C_ X -> ( P e. ( ( cls ` J ) ` S ) -> ( N e. ( ( nei ` J ) ` { P } ) -> ( N i^i S ) =/= (/) ) ) ) ) |
| 22 | 21 | imp43 | |- ( ( ( J e. Top /\ S C_ X ) /\ ( P e. ( ( cls ` J ) ` S ) /\ N e. ( ( nei ` J ) ` { P } ) ) ) -> ( N i^i S ) =/= (/) ) |