This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Universal property and fully faithful functor surjective on objects. (Contributed by Zhi Wang, 25-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uptr2.a | |- A = ( Base ` C ) |
|
| uptr2.b | |- B = ( Base ` D ) |
||
| uptr2.y | |- ( ph -> Y = ( R ` X ) ) |
||
| uptr2.r | |- ( ph -> R : A -onto-> B ) |
||
| uptr2.s | |- ( ph -> R ( ( C Full D ) i^i ( C Faith D ) ) S ) |
||
| uptr2.f | |- ( ph -> ( <. K , L >. o.func <. R , S >. ) = <. F , G >. ) |
||
| uptr2.x | |- ( ph -> X e. A ) |
||
| uptr2.k | |- ( ph -> K ( D Func E ) L ) |
||
| Assertion | uptr2 | |- ( ph -> ( X ( <. F , G >. ( C UP E ) Z ) M <-> Y ( <. K , L >. ( D UP E ) Z ) M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uptr2.a | |- A = ( Base ` C ) |
|
| 2 | uptr2.b | |- B = ( Base ` D ) |
|
| 3 | uptr2.y | |- ( ph -> Y = ( R ` X ) ) |
|
| 4 | uptr2.r | |- ( ph -> R : A -onto-> B ) |
|
| 5 | uptr2.s | |- ( ph -> R ( ( C Full D ) i^i ( C Faith D ) ) S ) |
|
| 6 | uptr2.f | |- ( ph -> ( <. K , L >. o.func <. R , S >. ) = <. F , G >. ) |
|
| 7 | uptr2.x | |- ( ph -> X e. A ) |
|
| 8 | uptr2.k | |- ( ph -> K ( D Func E ) L ) |
|
| 9 | simpr | |- ( ( ph /\ X ( <. F , G >. ( C UP E ) Z ) M ) -> X ( <. F , G >. ( C UP E ) Z ) M ) |
|
| 10 | eqid | |- ( Base ` E ) = ( Base ` E ) |
|
| 11 | 9 10 | uprcl3 | |- ( ( ph /\ X ( <. F , G >. ( C UP E ) Z ) M ) -> Z e. ( Base ` E ) ) |
| 12 | eqid | |- ( Hom ` E ) = ( Hom ` E ) |
|
| 13 | 9 12 | uprcl5 | |- ( ( ph /\ X ( <. F , G >. ( C UP E ) Z ) M ) -> M e. ( Z ( Hom ` E ) ( F ` X ) ) ) |
| 14 | 11 13 | jca | |- ( ( ph /\ X ( <. F , G >. ( C UP E ) Z ) M ) -> ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) |
| 15 | simpr | |- ( ( ph /\ Y ( <. K , L >. ( D UP E ) Z ) M ) -> Y ( <. K , L >. ( D UP E ) Z ) M ) |
|
| 16 | 15 10 | uprcl3 | |- ( ( ph /\ Y ( <. K , L >. ( D UP E ) Z ) M ) -> Z e. ( Base ` E ) ) |
| 17 | 15 12 | uprcl5 | |- ( ( ph /\ Y ( <. K , L >. ( D UP E ) Z ) M ) -> M e. ( Z ( Hom ` E ) ( K ` Y ) ) ) |
| 18 | 3 | fveq2d | |- ( ph -> ( K ` Y ) = ( K ` ( R ` X ) ) ) |
| 19 | inss1 | |- ( ( C Full D ) i^i ( C Faith D ) ) C_ ( C Full D ) |
|
| 20 | fullfunc | |- ( C Full D ) C_ ( C Func D ) |
|
| 21 | 19 20 | sstri | |- ( ( C Full D ) i^i ( C Faith D ) ) C_ ( C Func D ) |
| 22 | 21 | ssbri | |- ( R ( ( C Full D ) i^i ( C Faith D ) ) S -> R ( C Func D ) S ) |
| 23 | 5 22 | syl | |- ( ph -> R ( C Func D ) S ) |
| 24 | 1 23 8 6 7 | cofu1a | |- ( ph -> ( K ` ( R ` X ) ) = ( F ` X ) ) |
| 25 | 18 24 | eqtrd | |- ( ph -> ( K ` Y ) = ( F ` X ) ) |
| 26 | 25 | oveq2d | |- ( ph -> ( Z ( Hom ` E ) ( K ` Y ) ) = ( Z ( Hom ` E ) ( F ` X ) ) ) |
| 27 | 26 | adantr | |- ( ( ph /\ Y ( <. K , L >. ( D UP E ) Z ) M ) -> ( Z ( Hom ` E ) ( K ` Y ) ) = ( Z ( Hom ` E ) ( F ` X ) ) ) |
| 28 | 17 27 | eleqtrd | |- ( ( ph /\ Y ( <. K , L >. ( D UP E ) Z ) M ) -> M e. ( Z ( Hom ` E ) ( F ` X ) ) ) |
| 29 | 16 28 | jca | |- ( ( ph /\ Y ( <. K , L >. ( D UP E ) Z ) M ) -> ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) |
| 30 | 4 | adantr | |- ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) -> R : A -onto-> B ) |
| 31 | fof | |- ( R : A -onto-> B -> R : A --> B ) |
|
| 32 | 30 31 | syl | |- ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) -> R : A --> B ) |
| 33 | 32 | ffvelcdmda | |- ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A ) -> ( R ` x ) e. B ) |
| 34 | foelrn | |- ( ( R : A -onto-> B /\ y e. B ) -> E. x e. A y = ( R ` x ) ) |
|
| 35 | 30 34 | sylan | |- ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ y e. B ) -> E. x e. A y = ( R ` x ) ) |
| 36 | simp3 | |- ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) -> y = ( R ` x ) ) |
|
| 37 | 36 | fveq2d | |- ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) -> ( K ` y ) = ( K ` ( R ` x ) ) ) |
| 38 | simp1l | |- ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) -> ph ) |
|
| 39 | 38 23 | syl | |- ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) -> R ( C Func D ) S ) |
| 40 | 8 | adantr | |- ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) -> K ( D Func E ) L ) |
| 41 | 40 | 3ad2ant1 | |- ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) -> K ( D Func E ) L ) |
| 42 | 38 6 | syl | |- ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) -> ( <. K , L >. o.func <. R , S >. ) = <. F , G >. ) |
| 43 | simp2 | |- ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) -> x e. A ) |
|
| 44 | 1 39 41 42 43 | cofu1a | |- ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) -> ( K ` ( R ` x ) ) = ( F ` x ) ) |
| 45 | 37 44 | eqtrd | |- ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) -> ( K ` y ) = ( F ` x ) ) |
| 46 | 45 | oveq2d | |- ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) -> ( Z ( Hom ` E ) ( K ` y ) ) = ( Z ( Hom ` E ) ( F ` x ) ) ) |
| 47 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 48 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 49 | 38 5 | syl | |- ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) -> R ( ( C Full D ) i^i ( C Faith D ) ) S ) |
| 50 | 38 7 | syl | |- ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) -> X e. A ) |
| 51 | 1 47 48 49 50 43 | ffthf1o | |- ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) -> ( X S x ) : ( X ( Hom ` C ) x ) -1-1-onto-> ( ( R ` X ) ( Hom ` D ) ( R ` x ) ) ) |
| 52 | 38 3 | syl | |- ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) -> Y = ( R ` X ) ) |
| 53 | 52 36 | oveq12d | |- ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) -> ( Y ( Hom ` D ) y ) = ( ( R ` X ) ( Hom ` D ) ( R ` x ) ) ) |
| 54 | 53 | f1oeq3d | |- ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) -> ( ( X S x ) : ( X ( Hom ` C ) x ) -1-1-onto-> ( Y ( Hom ` D ) y ) <-> ( X S x ) : ( X ( Hom ` C ) x ) -1-1-onto-> ( ( R ` X ) ( Hom ` D ) ( R ` x ) ) ) ) |
| 55 | 51 54 | mpbird | |- ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) -> ( X S x ) : ( X ( Hom ` C ) x ) -1-1-onto-> ( Y ( Hom ` D ) y ) ) |
| 56 | f1of | |- ( ( X S x ) : ( X ( Hom ` C ) x ) -1-1-onto-> ( Y ( Hom ` D ) y ) -> ( X S x ) : ( X ( Hom ` C ) x ) --> ( Y ( Hom ` D ) y ) ) |
|
| 57 | 55 56 | syl | |- ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) -> ( X S x ) : ( X ( Hom ` C ) x ) --> ( Y ( Hom ` D ) y ) ) |
| 58 | 57 | ffvelcdmda | |- ( ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) /\ k e. ( X ( Hom ` C ) x ) ) -> ( ( X S x ) ` k ) e. ( Y ( Hom ` D ) y ) ) |
| 59 | f1ofveu | |- ( ( ( X S x ) : ( X ( Hom ` C ) x ) -1-1-onto-> ( Y ( Hom ` D ) y ) /\ l e. ( Y ( Hom ` D ) y ) ) -> E! k e. ( X ( Hom ` C ) x ) ( ( X S x ) ` k ) = l ) |
|
| 60 | eqcom | |- ( ( ( X S x ) ` k ) = l <-> l = ( ( X S x ) ` k ) ) |
|
| 61 | 60 | reubii | |- ( E! k e. ( X ( Hom ` C ) x ) ( ( X S x ) ` k ) = l <-> E! k e. ( X ( Hom ` C ) x ) l = ( ( X S x ) ` k ) ) |
| 62 | 59 61 | sylib | |- ( ( ( X S x ) : ( X ( Hom ` C ) x ) -1-1-onto-> ( Y ( Hom ` D ) y ) /\ l e. ( Y ( Hom ` D ) y ) ) -> E! k e. ( X ( Hom ` C ) x ) l = ( ( X S x ) ` k ) ) |
| 63 | 55 62 | sylan | |- ( ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) /\ l e. ( Y ( Hom ` D ) y ) ) -> E! k e. ( X ( Hom ` C ) x ) l = ( ( X S x ) ` k ) ) |
| 64 | 38 25 | syl | |- ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) -> ( K ` Y ) = ( F ` X ) ) |
| 65 | 64 | opeq2d | |- ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) -> <. Z , ( K ` Y ) >. = <. Z , ( F ` X ) >. ) |
| 66 | 65 45 | oveq12d | |- ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) -> ( <. Z , ( K ` Y ) >. ( comp ` E ) ( K ` y ) ) = ( <. Z , ( F ` X ) >. ( comp ` E ) ( F ` x ) ) ) |
| 67 | 66 | adantr | |- ( ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) /\ ( k e. ( X ( Hom ` C ) x ) /\ l = ( ( X S x ) ` k ) ) ) -> ( <. Z , ( K ` Y ) >. ( comp ` E ) ( K ` y ) ) = ( <. Z , ( F ` X ) >. ( comp ` E ) ( F ` x ) ) ) |
| 68 | 52 | adantr | |- ( ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) /\ ( k e. ( X ( Hom ` C ) x ) /\ l = ( ( X S x ) ` k ) ) ) -> Y = ( R ` X ) ) |
| 69 | simpl3 | |- ( ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) /\ ( k e. ( X ( Hom ` C ) x ) /\ l = ( ( X S x ) ` k ) ) ) -> y = ( R ` x ) ) |
|
| 70 | 68 69 | oveq12d | |- ( ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) /\ ( k e. ( X ( Hom ` C ) x ) /\ l = ( ( X S x ) ` k ) ) ) -> ( Y L y ) = ( ( R ` X ) L ( R ` x ) ) ) |
| 71 | simprr | |- ( ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) /\ ( k e. ( X ( Hom ` C ) x ) /\ l = ( ( X S x ) ` k ) ) ) -> l = ( ( X S x ) ` k ) ) |
|
| 72 | 70 71 | fveq12d | |- ( ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) /\ ( k e. ( X ( Hom ` C ) x ) /\ l = ( ( X S x ) ` k ) ) ) -> ( ( Y L y ) ` l ) = ( ( ( R ` X ) L ( R ` x ) ) ` ( ( X S x ) ` k ) ) ) |
| 73 | 39 | adantr | |- ( ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) /\ ( k e. ( X ( Hom ` C ) x ) /\ l = ( ( X S x ) ` k ) ) ) -> R ( C Func D ) S ) |
| 74 | 41 | adantr | |- ( ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) /\ ( k e. ( X ( Hom ` C ) x ) /\ l = ( ( X S x ) ` k ) ) ) -> K ( D Func E ) L ) |
| 75 | 42 | adantr | |- ( ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) /\ ( k e. ( X ( Hom ` C ) x ) /\ l = ( ( X S x ) ` k ) ) ) -> ( <. K , L >. o.func <. R , S >. ) = <. F , G >. ) |
| 76 | 50 | adantr | |- ( ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) /\ ( k e. ( X ( Hom ` C ) x ) /\ l = ( ( X S x ) ` k ) ) ) -> X e. A ) |
| 77 | 43 | adantr | |- ( ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) /\ ( k e. ( X ( Hom ` C ) x ) /\ l = ( ( X S x ) ` k ) ) ) -> x e. A ) |
| 78 | simprl | |- ( ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) /\ ( k e. ( X ( Hom ` C ) x ) /\ l = ( ( X S x ) ` k ) ) ) -> k e. ( X ( Hom ` C ) x ) ) |
|
| 79 | 1 73 74 75 76 77 47 78 | cofu2a | |- ( ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) /\ ( k e. ( X ( Hom ` C ) x ) /\ l = ( ( X S x ) ` k ) ) ) -> ( ( ( R ` X ) L ( R ` x ) ) ` ( ( X S x ) ` k ) ) = ( ( X G x ) ` k ) ) |
| 80 | 72 79 | eqtrd | |- ( ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) /\ ( k e. ( X ( Hom ` C ) x ) /\ l = ( ( X S x ) ` k ) ) ) -> ( ( Y L y ) ` l ) = ( ( X G x ) ` k ) ) |
| 81 | eqidd | |- ( ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) /\ ( k e. ( X ( Hom ` C ) x ) /\ l = ( ( X S x ) ` k ) ) ) -> M = M ) |
|
| 82 | 67 80 81 | oveq123d | |- ( ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) /\ ( k e. ( X ( Hom ` C ) x ) /\ l = ( ( X S x ) ` k ) ) ) -> ( ( ( Y L y ) ` l ) ( <. Z , ( K ` Y ) >. ( comp ` E ) ( K ` y ) ) M ) = ( ( ( X G x ) ` k ) ( <. Z , ( F ` X ) >. ( comp ` E ) ( F ` x ) ) M ) ) |
| 83 | 82 | eqeq2d | |- ( ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) /\ ( k e. ( X ( Hom ` C ) x ) /\ l = ( ( X S x ) ` k ) ) ) -> ( g = ( ( ( Y L y ) ` l ) ( <. Z , ( K ` Y ) >. ( comp ` E ) ( K ` y ) ) M ) <-> g = ( ( ( X G x ) ` k ) ( <. Z , ( F ` X ) >. ( comp ` E ) ( F ` x ) ) M ) ) ) |
| 84 | 58 63 83 | reuxfr1dd | |- ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) -> ( E! l e. ( Y ( Hom ` D ) y ) g = ( ( ( Y L y ) ` l ) ( <. Z , ( K ` Y ) >. ( comp ` E ) ( K ` y ) ) M ) <-> E! k e. ( X ( Hom ` C ) x ) g = ( ( ( X G x ) ` k ) ( <. Z , ( F ` X ) >. ( comp ` E ) ( F ` x ) ) M ) ) ) |
| 85 | 46 84 | raleqbidv | |- ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) -> ( A. g e. ( Z ( Hom ` E ) ( K ` y ) ) E! l e. ( Y ( Hom ` D ) y ) g = ( ( ( Y L y ) ` l ) ( <. Z , ( K ` Y ) >. ( comp ` E ) ( K ` y ) ) M ) <-> A. g e. ( Z ( Hom ` E ) ( F ` x ) ) E! k e. ( X ( Hom ` C ) x ) g = ( ( ( X G x ) ` k ) ( <. Z , ( F ` X ) >. ( comp ` E ) ( F ` x ) ) M ) ) ) |
| 86 | 33 35 85 | ralxfrd2 | |- ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) -> ( A. y e. B A. g e. ( Z ( Hom ` E ) ( K ` y ) ) E! l e. ( Y ( Hom ` D ) y ) g = ( ( ( Y L y ) ` l ) ( <. Z , ( K ` Y ) >. ( comp ` E ) ( K ` y ) ) M ) <-> A. x e. A A. g e. ( Z ( Hom ` E ) ( F ` x ) ) E! k e. ( X ( Hom ` C ) x ) g = ( ( ( X G x ) ` k ) ( <. Z , ( F ` X ) >. ( comp ` E ) ( F ` x ) ) M ) ) ) |
| 87 | eqid | |- ( comp ` E ) = ( comp ` E ) |
|
| 88 | simprl | |- ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) -> Z e. ( Base ` E ) ) |
|
| 89 | 3 | adantr | |- ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) -> Y = ( R ` X ) ) |
| 90 | 7 | adantr | |- ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) -> X e. A ) |
| 91 | 32 90 | ffvelcdmd | |- ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) -> ( R ` X ) e. B ) |
| 92 | 89 91 | eqeltrd | |- ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) -> Y e. B ) |
| 93 | simprr | |- ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) -> M e. ( Z ( Hom ` E ) ( F ` X ) ) ) |
|
| 94 | 26 | adantr | |- ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) -> ( Z ( Hom ` E ) ( K ` Y ) ) = ( Z ( Hom ` E ) ( F ` X ) ) ) |
| 95 | 93 94 | eleqtrrd | |- ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) -> M e. ( Z ( Hom ` E ) ( K ` Y ) ) ) |
| 96 | 2 10 48 12 87 88 40 92 95 | isup | |- ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) -> ( Y ( <. K , L >. ( D UP E ) Z ) M <-> A. y e. B A. g e. ( Z ( Hom ` E ) ( K ` y ) ) E! l e. ( Y ( Hom ` D ) y ) g = ( ( ( Y L y ) ` l ) ( <. Z , ( K ` Y ) >. ( comp ` E ) ( K ` y ) ) M ) ) ) |
| 97 | 23 8 | cofucla | |- ( ph -> ( <. K , L >. o.func <. R , S >. ) e. ( C Func E ) ) |
| 98 | 6 97 | eqeltrrd | |- ( ph -> <. F , G >. e. ( C Func E ) ) |
| 99 | df-br | |- ( F ( C Func E ) G <-> <. F , G >. e. ( C Func E ) ) |
|
| 100 | 98 99 | sylibr | |- ( ph -> F ( C Func E ) G ) |
| 101 | 100 | adantr | |- ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) -> F ( C Func E ) G ) |
| 102 | 1 10 47 12 87 88 101 90 93 | isup | |- ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) -> ( X ( <. F , G >. ( C UP E ) Z ) M <-> A. x e. A A. g e. ( Z ( Hom ` E ) ( F ` x ) ) E! k e. ( X ( Hom ` C ) x ) g = ( ( ( X G x ) ` k ) ( <. Z , ( F ` X ) >. ( comp ` E ) ( F ` x ) ) M ) ) ) |
| 103 | 86 96 102 | 3bitr4rd | |- ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) -> ( X ( <. F , G >. ( C UP E ) Z ) M <-> Y ( <. K , L >. ( D UP E ) Z ) M ) ) |
| 104 | 14 29 103 | bibiad | |- ( ph -> ( X ( <. F , G >. ( C UP E ) Z ) M <-> Y ( <. K , L >. ( D UP E ) Z ) M ) ) |