This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the morphism part of the functor composition. (Contributed by Zhi Wang, 16-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cofu1a.b | |- B = ( Base ` C ) |
|
| cofu1a.f | |- ( ph -> F ( C Func D ) G ) |
||
| cofu1a.k | |- ( ph -> K ( D Func E ) L ) |
||
| cofu1a.m | |- ( ph -> ( <. K , L >. o.func <. F , G >. ) = <. M , N >. ) |
||
| cofu1a.x | |- ( ph -> X e. B ) |
||
| cofu2a.y | |- ( ph -> Y e. B ) |
||
| cofu2a.h | |- H = ( Hom ` C ) |
||
| cofu2a.r | |- ( ph -> R e. ( X H Y ) ) |
||
| Assertion | cofu2a | |- ( ph -> ( ( ( F ` X ) L ( F ` Y ) ) ` ( ( X G Y ) ` R ) ) = ( ( X N Y ) ` R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofu1a.b | |- B = ( Base ` C ) |
|
| 2 | cofu1a.f | |- ( ph -> F ( C Func D ) G ) |
|
| 3 | cofu1a.k | |- ( ph -> K ( D Func E ) L ) |
|
| 4 | cofu1a.m | |- ( ph -> ( <. K , L >. o.func <. F , G >. ) = <. M , N >. ) |
|
| 5 | cofu1a.x | |- ( ph -> X e. B ) |
|
| 6 | cofu2a.y | |- ( ph -> Y e. B ) |
|
| 7 | cofu2a.h | |- H = ( Hom ` C ) |
|
| 8 | cofu2a.r | |- ( ph -> R e. ( X H Y ) ) |
|
| 9 | df-br | |- ( F ( C Func D ) G <-> <. F , G >. e. ( C Func D ) ) |
|
| 10 | 2 9 | sylib | |- ( ph -> <. F , G >. e. ( C Func D ) ) |
| 11 | df-br | |- ( K ( D Func E ) L <-> <. K , L >. e. ( D Func E ) ) |
|
| 12 | 3 11 | sylib | |- ( ph -> <. K , L >. e. ( D Func E ) ) |
| 13 | 1 10 12 5 6 7 8 | cofu2 | |- ( ph -> ( ( X ( 2nd ` ( <. K , L >. o.func <. F , G >. ) ) Y ) ` R ) = ( ( ( ( 1st ` <. F , G >. ) ` X ) ( 2nd ` <. K , L >. ) ( ( 1st ` <. F , G >. ) ` Y ) ) ` ( ( X ( 2nd ` <. F , G >. ) Y ) ` R ) ) ) |
| 14 | 4 | fveq2d | |- ( ph -> ( 2nd ` ( <. K , L >. o.func <. F , G >. ) ) = ( 2nd ` <. M , N >. ) ) |
| 15 | 10 12 | cofucl | |- ( ph -> ( <. K , L >. o.func <. F , G >. ) e. ( C Func E ) ) |
| 16 | 4 15 | eqeltrrd | |- ( ph -> <. M , N >. e. ( C Func E ) ) |
| 17 | df-br | |- ( M ( C Func E ) N <-> <. M , N >. e. ( C Func E ) ) |
|
| 18 | 16 17 | sylibr | |- ( ph -> M ( C Func E ) N ) |
| 19 | 18 | func2nd | |- ( ph -> ( 2nd ` <. M , N >. ) = N ) |
| 20 | 14 19 | eqtrd | |- ( ph -> ( 2nd ` ( <. K , L >. o.func <. F , G >. ) ) = N ) |
| 21 | 20 | oveqd | |- ( ph -> ( X ( 2nd ` ( <. K , L >. o.func <. F , G >. ) ) Y ) = ( X N Y ) ) |
| 22 | 21 | fveq1d | |- ( ph -> ( ( X ( 2nd ` ( <. K , L >. o.func <. F , G >. ) ) Y ) ` R ) = ( ( X N Y ) ` R ) ) |
| 23 | 3 | func2nd | |- ( ph -> ( 2nd ` <. K , L >. ) = L ) |
| 24 | 2 | func1st | |- ( ph -> ( 1st ` <. F , G >. ) = F ) |
| 25 | 24 | fveq1d | |- ( ph -> ( ( 1st ` <. F , G >. ) ` X ) = ( F ` X ) ) |
| 26 | 24 | fveq1d | |- ( ph -> ( ( 1st ` <. F , G >. ) ` Y ) = ( F ` Y ) ) |
| 27 | 23 25 26 | oveq123d | |- ( ph -> ( ( ( 1st ` <. F , G >. ) ` X ) ( 2nd ` <. K , L >. ) ( ( 1st ` <. F , G >. ) ` Y ) ) = ( ( F ` X ) L ( F ` Y ) ) ) |
| 28 | 2 | func2nd | |- ( ph -> ( 2nd ` <. F , G >. ) = G ) |
| 29 | 28 | oveqd | |- ( ph -> ( X ( 2nd ` <. F , G >. ) Y ) = ( X G Y ) ) |
| 30 | 29 | fveq1d | |- ( ph -> ( ( X ( 2nd ` <. F , G >. ) Y ) ` R ) = ( ( X G Y ) ` R ) ) |
| 31 | 27 30 | fveq12d | |- ( ph -> ( ( ( ( 1st ` <. F , G >. ) ` X ) ( 2nd ` <. K , L >. ) ( ( 1st ` <. F , G >. ) ` Y ) ) ` ( ( X ( 2nd ` <. F , G >. ) Y ) ` R ) ) = ( ( ( F ` X ) L ( F ` Y ) ) ` ( ( X G Y ) ` R ) ) ) |
| 32 | 13 22 31 | 3eqtr3rd | |- ( ph -> ( ( ( F ` X ) L ( F ` Y ) ) ` ( ( X G Y ) ` R ) ) = ( ( X N Y ) ` R ) ) |