This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer existential uniqueness from a variable x to another variable y contained in expression A . Simplifies reuxfr1d . (Contributed by Zhi Wang, 20-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | reuxfr1dd.1 | |- ( ( ph /\ y e. C ) -> A e. B ) |
|
| reuxfr1dd.2 | |- ( ( ph /\ x e. B ) -> E! y e. C x = A ) |
||
| reuxfr1dd.3 | |- ( ( ph /\ ( y e. C /\ x = A ) ) -> ( ps <-> ch ) ) |
||
| Assertion | reuxfr1dd | |- ( ph -> ( E! x e. B ps <-> E! y e. C ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reuxfr1dd.1 | |- ( ( ph /\ y e. C ) -> A e. B ) |
|
| 2 | reuxfr1dd.2 | |- ( ( ph /\ x e. B ) -> E! y e. C x = A ) |
|
| 3 | reuxfr1dd.3 | |- ( ( ph /\ ( y e. C /\ x = A ) ) -> ( ps <-> ch ) ) |
|
| 4 | reurex | |- ( E! y e. C x = A -> E. y e. C x = A ) |
|
| 5 | 2 4 | syl | |- ( ( ph /\ x e. B ) -> E. y e. C x = A ) |
| 6 | 5 | biantrurd | |- ( ( ph /\ x e. B ) -> ( ps <-> ( E. y e. C x = A /\ ps ) ) ) |
| 7 | r19.41v | |- ( E. y e. C ( x = A /\ ps ) <-> ( E. y e. C x = A /\ ps ) ) |
|
| 8 | 3 | pm5.32da | |- ( ph -> ( ( ( y e. C /\ x = A ) /\ ps ) <-> ( ( y e. C /\ x = A ) /\ ch ) ) ) |
| 9 | anass | |- ( ( ( y e. C /\ x = A ) /\ ps ) <-> ( y e. C /\ ( x = A /\ ps ) ) ) |
|
| 10 | anass | |- ( ( ( y e. C /\ x = A ) /\ ch ) <-> ( y e. C /\ ( x = A /\ ch ) ) ) |
|
| 11 | 8 9 10 | 3bitr3g | |- ( ph -> ( ( y e. C /\ ( x = A /\ ps ) ) <-> ( y e. C /\ ( x = A /\ ch ) ) ) ) |
| 12 | 11 | rexbidv2 | |- ( ph -> ( E. y e. C ( x = A /\ ps ) <-> E. y e. C ( x = A /\ ch ) ) ) |
| 13 | 7 12 | bitr3id | |- ( ph -> ( ( E. y e. C x = A /\ ps ) <-> E. y e. C ( x = A /\ ch ) ) ) |
| 14 | 13 | adantr | |- ( ( ph /\ x e. B ) -> ( ( E. y e. C x = A /\ ps ) <-> E. y e. C ( x = A /\ ch ) ) ) |
| 15 | 6 14 | bitrd | |- ( ( ph /\ x e. B ) -> ( ps <-> E. y e. C ( x = A /\ ch ) ) ) |
| 16 | 15 | reubidva | |- ( ph -> ( E! x e. B ps <-> E! x e. B E. y e. C ( x = A /\ ch ) ) ) |
| 17 | reurmo | |- ( E! y e. C x = A -> E* y e. C x = A ) |
|
| 18 | 2 17 | syl | |- ( ( ph /\ x e. B ) -> E* y e. C x = A ) |
| 19 | 1 18 | reuxfrd | |- ( ph -> ( E! x e. B E. y e. C ( x = A /\ ch ) <-> E! y e. C ch ) ) |
| 20 | 16 19 | bitrd | |- ( ph -> ( E! x e. B ps <-> E! y e. C ch ) ) |