This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Universal property and fully faithful functor surjective on objects. (Contributed by Zhi Wang, 25-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uptr2.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | |
| uptr2.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | ||
| uptr2.y | ⊢ ( 𝜑 → 𝑌 = ( 𝑅 ‘ 𝑋 ) ) | ||
| uptr2.r | ⊢ ( 𝜑 → 𝑅 : 𝐴 –onto→ 𝐵 ) | ||
| uptr2.s | ⊢ ( 𝜑 → 𝑅 ( ( 𝐶 Full 𝐷 ) ∩ ( 𝐶 Faith 𝐷 ) ) 𝑆 ) | ||
| uptr2.f | ⊢ ( 𝜑 → ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝑅 , 𝑆 〉 ) = 〈 𝐹 , 𝐺 〉 ) | ||
| uptr2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | ||
| uptr2.k | ⊢ ( 𝜑 → 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 ) | ||
| Assertion | uptr2 | ⊢ ( 𝜑 → ( 𝑋 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐸 ) 𝑍 ) 𝑀 ↔ 𝑌 ( 〈 𝐾 , 𝐿 〉 ( 𝐷 UP 𝐸 ) 𝑍 ) 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uptr2.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | |
| 2 | uptr2.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 3 | uptr2.y | ⊢ ( 𝜑 → 𝑌 = ( 𝑅 ‘ 𝑋 ) ) | |
| 4 | uptr2.r | ⊢ ( 𝜑 → 𝑅 : 𝐴 –onto→ 𝐵 ) | |
| 5 | uptr2.s | ⊢ ( 𝜑 → 𝑅 ( ( 𝐶 Full 𝐷 ) ∩ ( 𝐶 Faith 𝐷 ) ) 𝑆 ) | |
| 6 | uptr2.f | ⊢ ( 𝜑 → ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝑅 , 𝑆 〉 ) = 〈 𝐹 , 𝐺 〉 ) | |
| 7 | uptr2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | |
| 8 | uptr2.k | ⊢ ( 𝜑 → 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 ) | |
| 9 | simpr | ⊢ ( ( 𝜑 ∧ 𝑋 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐸 ) 𝑍 ) 𝑀 ) → 𝑋 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐸 ) 𝑍 ) 𝑀 ) | |
| 10 | eqid | ⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) | |
| 11 | 9 10 | uprcl3 | ⊢ ( ( 𝜑 ∧ 𝑋 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐸 ) 𝑍 ) 𝑀 ) → 𝑍 ∈ ( Base ‘ 𝐸 ) ) |
| 12 | eqid | ⊢ ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 ) | |
| 13 | 9 12 | uprcl5 | ⊢ ( ( 𝜑 ∧ 𝑋 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐸 ) 𝑍 ) 𝑀 ) → 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) |
| 14 | 11 13 | jca | ⊢ ( ( 𝜑 ∧ 𝑋 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐸 ) 𝑍 ) 𝑀 ) → ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 15 | simpr | ⊢ ( ( 𝜑 ∧ 𝑌 ( 〈 𝐾 , 𝐿 〉 ( 𝐷 UP 𝐸 ) 𝑍 ) 𝑀 ) → 𝑌 ( 〈 𝐾 , 𝐿 〉 ( 𝐷 UP 𝐸 ) 𝑍 ) 𝑀 ) | |
| 16 | 15 10 | uprcl3 | ⊢ ( ( 𝜑 ∧ 𝑌 ( 〈 𝐾 , 𝐿 〉 ( 𝐷 UP 𝐸 ) 𝑍 ) 𝑀 ) → 𝑍 ∈ ( Base ‘ 𝐸 ) ) |
| 17 | 15 12 | uprcl5 | ⊢ ( ( 𝜑 ∧ 𝑌 ( 〈 𝐾 , 𝐿 〉 ( 𝐷 UP 𝐸 ) 𝑍 ) 𝑀 ) → 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐾 ‘ 𝑌 ) ) ) |
| 18 | 3 | fveq2d | ⊢ ( 𝜑 → ( 𝐾 ‘ 𝑌 ) = ( 𝐾 ‘ ( 𝑅 ‘ 𝑋 ) ) ) |
| 19 | inss1 | ⊢ ( ( 𝐶 Full 𝐷 ) ∩ ( 𝐶 Faith 𝐷 ) ) ⊆ ( 𝐶 Full 𝐷 ) | |
| 20 | fullfunc | ⊢ ( 𝐶 Full 𝐷 ) ⊆ ( 𝐶 Func 𝐷 ) | |
| 21 | 19 20 | sstri | ⊢ ( ( 𝐶 Full 𝐷 ) ∩ ( 𝐶 Faith 𝐷 ) ) ⊆ ( 𝐶 Func 𝐷 ) |
| 22 | 21 | ssbri | ⊢ ( 𝑅 ( ( 𝐶 Full 𝐷 ) ∩ ( 𝐶 Faith 𝐷 ) ) 𝑆 → 𝑅 ( 𝐶 Func 𝐷 ) 𝑆 ) |
| 23 | 5 22 | syl | ⊢ ( 𝜑 → 𝑅 ( 𝐶 Func 𝐷 ) 𝑆 ) |
| 24 | 1 23 8 6 7 | cofu1a | ⊢ ( 𝜑 → ( 𝐾 ‘ ( 𝑅 ‘ 𝑋 ) ) = ( 𝐹 ‘ 𝑋 ) ) |
| 25 | 18 24 | eqtrd | ⊢ ( 𝜑 → ( 𝐾 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 26 | 25 | oveq2d | ⊢ ( 𝜑 → ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐾 ‘ 𝑌 ) ) = ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) |
| 27 | 26 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ( 〈 𝐾 , 𝐿 〉 ( 𝐷 UP 𝐸 ) 𝑍 ) 𝑀 ) → ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐾 ‘ 𝑌 ) ) = ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) |
| 28 | 17 27 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑌 ( 〈 𝐾 , 𝐿 〉 ( 𝐷 UP 𝐸 ) 𝑍 ) 𝑀 ) → 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) |
| 29 | 16 28 | jca | ⊢ ( ( 𝜑 ∧ 𝑌 ( 〈 𝐾 , 𝐿 〉 ( 𝐷 UP 𝐸 ) 𝑍 ) 𝑀 ) → ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 30 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) → 𝑅 : 𝐴 –onto→ 𝐵 ) |
| 31 | fof | ⊢ ( 𝑅 : 𝐴 –onto→ 𝐵 → 𝑅 : 𝐴 ⟶ 𝐵 ) | |
| 32 | 30 31 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) → 𝑅 : 𝐴 ⟶ 𝐵 ) |
| 33 | 32 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑅 ‘ 𝑥 ) ∈ 𝐵 ) |
| 34 | foelrn | ⊢ ( ( 𝑅 : 𝐴 –onto→ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝑅 ‘ 𝑥 ) ) | |
| 35 | 30 34 | sylan | ⊢ ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝑅 ‘ 𝑥 ) ) |
| 36 | simp3 | ⊢ ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) → 𝑦 = ( 𝑅 ‘ 𝑥 ) ) | |
| 37 | 36 | fveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) → ( 𝐾 ‘ 𝑦 ) = ( 𝐾 ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 38 | simp1l | ⊢ ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) → 𝜑 ) | |
| 39 | 38 23 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) → 𝑅 ( 𝐶 Func 𝐷 ) 𝑆 ) |
| 40 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) → 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 ) |
| 41 | 40 | 3ad2ant1 | ⊢ ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) → 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 ) |
| 42 | 38 6 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) → ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝑅 , 𝑆 〉 ) = 〈 𝐹 , 𝐺 〉 ) |
| 43 | simp2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) → 𝑥 ∈ 𝐴 ) | |
| 44 | 1 39 41 42 43 | cofu1a | ⊢ ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) → ( 𝐾 ‘ ( 𝑅 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 45 | 37 44 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) → ( 𝐾 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 46 | 45 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) → ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐾 ‘ 𝑦 ) ) = ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑥 ) ) ) |
| 47 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 48 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 49 | 38 5 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) → 𝑅 ( ( 𝐶 Full 𝐷 ) ∩ ( 𝐶 Faith 𝐷 ) ) 𝑆 ) |
| 50 | 38 7 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) → 𝑋 ∈ 𝐴 ) |
| 51 | 1 47 48 49 50 43 | ffthf1o | ⊢ ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) → ( 𝑋 𝑆 𝑥 ) : ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) –1-1-onto→ ( ( 𝑅 ‘ 𝑋 ) ( Hom ‘ 𝐷 ) ( 𝑅 ‘ 𝑥 ) ) ) |
| 52 | 38 3 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) → 𝑌 = ( 𝑅 ‘ 𝑋 ) ) |
| 53 | 52 36 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) → ( 𝑌 ( Hom ‘ 𝐷 ) 𝑦 ) = ( ( 𝑅 ‘ 𝑋 ) ( Hom ‘ 𝐷 ) ( 𝑅 ‘ 𝑥 ) ) ) |
| 54 | 53 | f1oeq3d | ⊢ ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) → ( ( 𝑋 𝑆 𝑥 ) : ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) –1-1-onto→ ( 𝑌 ( Hom ‘ 𝐷 ) 𝑦 ) ↔ ( 𝑋 𝑆 𝑥 ) : ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) –1-1-onto→ ( ( 𝑅 ‘ 𝑋 ) ( Hom ‘ 𝐷 ) ( 𝑅 ‘ 𝑥 ) ) ) ) |
| 55 | 51 54 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) → ( 𝑋 𝑆 𝑥 ) : ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) –1-1-onto→ ( 𝑌 ( Hom ‘ 𝐷 ) 𝑦 ) ) |
| 56 | f1of | ⊢ ( ( 𝑋 𝑆 𝑥 ) : ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) –1-1-onto→ ( 𝑌 ( Hom ‘ 𝐷 ) 𝑦 ) → ( 𝑋 𝑆 𝑥 ) : ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) ⟶ ( 𝑌 ( Hom ‘ 𝐷 ) 𝑦 ) ) | |
| 57 | 55 56 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) → ( 𝑋 𝑆 𝑥 ) : ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) ⟶ ( 𝑌 ( Hom ‘ 𝐷 ) 𝑦 ) ) |
| 58 | 57 | ffvelcdmda | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) ∧ 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) ∈ ( 𝑌 ( Hom ‘ 𝐷 ) 𝑦 ) ) |
| 59 | f1ofveu | ⊢ ( ( ( 𝑋 𝑆 𝑥 ) : ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) –1-1-onto→ ( 𝑌 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑙 ∈ ( 𝑌 ( Hom ‘ 𝐷 ) 𝑦 ) ) → ∃! 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) = 𝑙 ) | |
| 60 | eqcom | ⊢ ( ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) = 𝑙 ↔ 𝑙 = ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) ) | |
| 61 | 60 | reubii | ⊢ ( ∃! 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) = 𝑙 ↔ ∃! 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) 𝑙 = ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) ) |
| 62 | 59 61 | sylib | ⊢ ( ( ( 𝑋 𝑆 𝑥 ) : ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) –1-1-onto→ ( 𝑌 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑙 ∈ ( 𝑌 ( Hom ‘ 𝐷 ) 𝑦 ) ) → ∃! 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) 𝑙 = ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) ) |
| 63 | 55 62 | sylan | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) ∧ 𝑙 ∈ ( 𝑌 ( Hom ‘ 𝐷 ) 𝑦 ) ) → ∃! 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) 𝑙 = ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) ) |
| 64 | 38 25 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) → ( 𝐾 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 65 | 64 | opeq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) → 〈 𝑍 , ( 𝐾 ‘ 𝑌 ) 〉 = 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 ) |
| 66 | 65 45 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) → ( 〈 𝑍 , ( 𝐾 ‘ 𝑌 ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ 𝑦 ) ) = ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑥 ) ) ) |
| 67 | 66 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) ∧ ( 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑙 = ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) ) ) → ( 〈 𝑍 , ( 𝐾 ‘ 𝑌 ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ 𝑦 ) ) = ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑥 ) ) ) |
| 68 | 52 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) ∧ ( 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑙 = ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) ) ) → 𝑌 = ( 𝑅 ‘ 𝑋 ) ) |
| 69 | simpl3 | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) ∧ ( 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑙 = ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) ) ) → 𝑦 = ( 𝑅 ‘ 𝑥 ) ) | |
| 70 | 68 69 | oveq12d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) ∧ ( 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑙 = ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) ) ) → ( 𝑌 𝐿 𝑦 ) = ( ( 𝑅 ‘ 𝑋 ) 𝐿 ( 𝑅 ‘ 𝑥 ) ) ) |
| 71 | simprr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) ∧ ( 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑙 = ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) ) ) → 𝑙 = ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) ) | |
| 72 | 70 71 | fveq12d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) ∧ ( 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑙 = ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) ) ) → ( ( 𝑌 𝐿 𝑦 ) ‘ 𝑙 ) = ( ( ( 𝑅 ‘ 𝑋 ) 𝐿 ( 𝑅 ‘ 𝑥 ) ) ‘ ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) ) ) |
| 73 | 39 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) ∧ ( 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑙 = ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) ) ) → 𝑅 ( 𝐶 Func 𝐷 ) 𝑆 ) |
| 74 | 41 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) ∧ ( 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑙 = ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) ) ) → 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 ) |
| 75 | 42 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) ∧ ( 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑙 = ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) ) ) → ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝑅 , 𝑆 〉 ) = 〈 𝐹 , 𝐺 〉 ) |
| 76 | 50 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) ∧ ( 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑙 = ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) ) ) → 𝑋 ∈ 𝐴 ) |
| 77 | 43 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) ∧ ( 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑙 = ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) ) ) → 𝑥 ∈ 𝐴 ) |
| 78 | simprl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) ∧ ( 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑙 = ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) ) ) → 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) ) | |
| 79 | 1 73 74 75 76 77 47 78 | cofu2a | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) ∧ ( 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑙 = ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) ) ) → ( ( ( 𝑅 ‘ 𝑋 ) 𝐿 ( 𝑅 ‘ 𝑥 ) ) ‘ ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) ) = ( ( 𝑋 𝐺 𝑥 ) ‘ 𝑘 ) ) |
| 80 | 72 79 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) ∧ ( 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑙 = ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) ) ) → ( ( 𝑌 𝐿 𝑦 ) ‘ 𝑙 ) = ( ( 𝑋 𝐺 𝑥 ) ‘ 𝑘 ) ) |
| 81 | eqidd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) ∧ ( 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑙 = ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) ) ) → 𝑀 = 𝑀 ) | |
| 82 | 67 80 81 | oveq123d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) ∧ ( 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑙 = ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) ) ) → ( ( ( 𝑌 𝐿 𝑦 ) ‘ 𝑙 ) ( 〈 𝑍 , ( 𝐾 ‘ 𝑌 ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ 𝑦 ) ) 𝑀 ) = ( ( ( 𝑋 𝐺 𝑥 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑥 ) ) 𝑀 ) ) |
| 83 | 82 | eqeq2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) ∧ ( 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑙 = ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) ) ) → ( 𝑔 = ( ( ( 𝑌 𝐿 𝑦 ) ‘ 𝑙 ) ( 〈 𝑍 , ( 𝐾 ‘ 𝑌 ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ 𝑦 ) ) 𝑀 ) ↔ 𝑔 = ( ( ( 𝑋 𝐺 𝑥 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑥 ) ) 𝑀 ) ) ) |
| 84 | 58 63 83 | reuxfr1dd | ⊢ ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) → ( ∃! 𝑙 ∈ ( 𝑌 ( Hom ‘ 𝐷 ) 𝑦 ) 𝑔 = ( ( ( 𝑌 𝐿 𝑦 ) ‘ 𝑙 ) ( 〈 𝑍 , ( 𝐾 ‘ 𝑌 ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ 𝑦 ) ) 𝑀 ) ↔ ∃! 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) 𝑔 = ( ( ( 𝑋 𝐺 𝑥 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑥 ) ) 𝑀 ) ) ) |
| 85 | 46 84 | raleqbidv | ⊢ ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) → ( ∀ 𝑔 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐾 ‘ 𝑦 ) ) ∃! 𝑙 ∈ ( 𝑌 ( Hom ‘ 𝐷 ) 𝑦 ) 𝑔 = ( ( ( 𝑌 𝐿 𝑦 ) ‘ 𝑙 ) ( 〈 𝑍 , ( 𝐾 ‘ 𝑌 ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ 𝑦 ) ) 𝑀 ) ↔ ∀ 𝑔 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑥 ) ) ∃! 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) 𝑔 = ( ( ( 𝑋 𝐺 𝑥 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑥 ) ) 𝑀 ) ) ) |
| 86 | 33 35 85 | ralxfrd2 | ⊢ ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐾 ‘ 𝑦 ) ) ∃! 𝑙 ∈ ( 𝑌 ( Hom ‘ 𝐷 ) 𝑦 ) 𝑔 = ( ( ( 𝑌 𝐿 𝑦 ) ‘ 𝑙 ) ( 〈 𝑍 , ( 𝐾 ‘ 𝑌 ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ 𝑦 ) ) 𝑀 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑔 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑥 ) ) ∃! 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) 𝑔 = ( ( ( 𝑋 𝐺 𝑥 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑥 ) ) 𝑀 ) ) ) |
| 87 | eqid | ⊢ ( comp ‘ 𝐸 ) = ( comp ‘ 𝐸 ) | |
| 88 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) → 𝑍 ∈ ( Base ‘ 𝐸 ) ) | |
| 89 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) → 𝑌 = ( 𝑅 ‘ 𝑋 ) ) |
| 90 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) → 𝑋 ∈ 𝐴 ) |
| 91 | 32 90 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) → ( 𝑅 ‘ 𝑋 ) ∈ 𝐵 ) |
| 92 | 89 91 | eqeltrd | ⊢ ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) → 𝑌 ∈ 𝐵 ) |
| 93 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) → 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) | |
| 94 | 26 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) → ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐾 ‘ 𝑌 ) ) = ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) |
| 95 | 93 94 | eleqtrrd | ⊢ ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) → 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐾 ‘ 𝑌 ) ) ) |
| 96 | 2 10 48 12 87 88 40 92 95 | isup | ⊢ ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) → ( 𝑌 ( 〈 𝐾 , 𝐿 〉 ( 𝐷 UP 𝐸 ) 𝑍 ) 𝑀 ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐾 ‘ 𝑦 ) ) ∃! 𝑙 ∈ ( 𝑌 ( Hom ‘ 𝐷 ) 𝑦 ) 𝑔 = ( ( ( 𝑌 𝐿 𝑦 ) ‘ 𝑙 ) ( 〈 𝑍 , ( 𝐾 ‘ 𝑌 ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ 𝑦 ) ) 𝑀 ) ) ) |
| 97 | 23 8 | cofucla | ⊢ ( 𝜑 → ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝑅 , 𝑆 〉 ) ∈ ( 𝐶 Func 𝐸 ) ) |
| 98 | 6 97 | eqeltrrd | ⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐸 ) ) |
| 99 | df-br | ⊢ ( 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐸 ) ) | |
| 100 | 98 99 | sylibr | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) |
| 101 | 100 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) → 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) |
| 102 | 1 10 47 12 87 88 101 90 93 | isup | ⊢ ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) → ( 𝑋 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐸 ) 𝑍 ) 𝑀 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑔 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑥 ) ) ∃! 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) 𝑔 = ( ( ( 𝑋 𝐺 𝑥 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑥 ) ) 𝑀 ) ) ) |
| 103 | 86 96 102 | 3bitr4rd | ⊢ ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) → ( 𝑋 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐸 ) 𝑍 ) 𝑀 ↔ 𝑌 ( 〈 𝐾 , 𝐿 〉 ( 𝐷 UP 𝐸 ) 𝑍 ) 𝑀 ) ) |
| 104 | 14 29 103 | bibiad | ⊢ ( 𝜑 → ( 𝑋 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐸 ) 𝑍 ) 𝑀 ↔ 𝑌 ( 〈 𝐾 , 𝐿 〉 ( 𝐷 UP 𝐸 ) 𝑍 ) 𝑀 ) ) |