This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the object part of the functor composition. (Contributed by Zhi Wang, 16-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cofu1a.b | |- B = ( Base ` C ) |
|
| cofu1a.f | |- ( ph -> F ( C Func D ) G ) |
||
| cofu1a.k | |- ( ph -> K ( D Func E ) L ) |
||
| cofu1a.m | |- ( ph -> ( <. K , L >. o.func <. F , G >. ) = <. M , N >. ) |
||
| cofu1a.x | |- ( ph -> X e. B ) |
||
| Assertion | cofu1a | |- ( ph -> ( K ` ( F ` X ) ) = ( M ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofu1a.b | |- B = ( Base ` C ) |
|
| 2 | cofu1a.f | |- ( ph -> F ( C Func D ) G ) |
|
| 3 | cofu1a.k | |- ( ph -> K ( D Func E ) L ) |
|
| 4 | cofu1a.m | |- ( ph -> ( <. K , L >. o.func <. F , G >. ) = <. M , N >. ) |
|
| 5 | cofu1a.x | |- ( ph -> X e. B ) |
|
| 6 | df-br | |- ( F ( C Func D ) G <-> <. F , G >. e. ( C Func D ) ) |
|
| 7 | 2 6 | sylib | |- ( ph -> <. F , G >. e. ( C Func D ) ) |
| 8 | df-br | |- ( K ( D Func E ) L <-> <. K , L >. e. ( D Func E ) ) |
|
| 9 | 3 8 | sylib | |- ( ph -> <. K , L >. e. ( D Func E ) ) |
| 10 | 1 7 9 5 | cofu1 | |- ( ph -> ( ( 1st ` ( <. K , L >. o.func <. F , G >. ) ) ` X ) = ( ( 1st ` <. K , L >. ) ` ( ( 1st ` <. F , G >. ) ` X ) ) ) |
| 11 | 4 | fveq2d | |- ( ph -> ( 1st ` ( <. K , L >. o.func <. F , G >. ) ) = ( 1st ` <. M , N >. ) ) |
| 12 | 7 9 | cofucl | |- ( ph -> ( <. K , L >. o.func <. F , G >. ) e. ( C Func E ) ) |
| 13 | 4 12 | eqeltrrd | |- ( ph -> <. M , N >. e. ( C Func E ) ) |
| 14 | df-br | |- ( M ( C Func E ) N <-> <. M , N >. e. ( C Func E ) ) |
|
| 15 | 13 14 | sylibr | |- ( ph -> M ( C Func E ) N ) |
| 16 | 15 | func1st | |- ( ph -> ( 1st ` <. M , N >. ) = M ) |
| 17 | 11 16 | eqtrd | |- ( ph -> ( 1st ` ( <. K , L >. o.func <. F , G >. ) ) = M ) |
| 18 | 17 | fveq1d | |- ( ph -> ( ( 1st ` ( <. K , L >. o.func <. F , G >. ) ) ` X ) = ( M ` X ) ) |
| 19 | 3 | func1st | |- ( ph -> ( 1st ` <. K , L >. ) = K ) |
| 20 | 2 | func1st | |- ( ph -> ( 1st ` <. F , G >. ) = F ) |
| 21 | 20 | fveq1d | |- ( ph -> ( ( 1st ` <. F , G >. ) ` X ) = ( F ` X ) ) |
| 22 | 19 21 | fveq12d | |- ( ph -> ( ( 1st ` <. K , L >. ) ` ( ( 1st ` <. F , G >. ) ` X ) ) = ( K ` ( F ` X ) ) ) |
| 23 | 10 18 22 | 3eqtr3rd | |- ( ph -> ( K ` ( F ` X ) ) = ( M ` X ) ) |