This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Eliminate an hypothesis th in a biconditional. (Contributed by Thierry Arnoux, 4-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bibiad.1 | |- ( ( ph /\ ps ) -> th ) |
|
| bibiad.2 | |- ( ( ph /\ ch ) -> th ) |
||
| bibiad.3 | |- ( ( ph /\ th ) -> ( ps <-> ch ) ) |
||
| Assertion | bibiad | |- ( ph -> ( ps <-> ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bibiad.1 | |- ( ( ph /\ ps ) -> th ) |
|
| 2 | bibiad.2 | |- ( ( ph /\ ch ) -> th ) |
|
| 3 | bibiad.3 | |- ( ( ph /\ th ) -> ( ps <-> ch ) ) |
|
| 4 | simpl | |- ( ( ph /\ ps ) -> ph ) |
|
| 5 | simpr | |- ( ( ph /\ ps ) -> ps ) |
|
| 6 | 3 | biimpa | |- ( ( ( ph /\ th ) /\ ps ) -> ch ) |
| 7 | 4 1 5 6 | syl21anc | |- ( ( ph /\ ps ) -> ch ) |
| 8 | simpl | |- ( ( ph /\ ch ) -> ph ) |
|
| 9 | simpr | |- ( ( ph /\ ch ) -> ch ) |
|
| 10 | 3 | biimpar | |- ( ( ( ph /\ th ) /\ ch ) -> ps ) |
| 11 | 8 2 9 10 | syl21anc | |- ( ( ph /\ ch ) -> ps ) |
| 12 | 7 11 | impbida | |- ( ph -> ( ps <-> ch ) ) |