This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse closure for the class of universal property. (Contributed by Zhi Wang, 25-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uprcl2.x | |- ( ph -> X ( <. F , G >. ( D UP E ) W ) M ) |
|
| uprcl3.c | |- C = ( Base ` E ) |
||
| Assertion | uprcl3 | |- ( ph -> W e. C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uprcl2.x | |- ( ph -> X ( <. F , G >. ( D UP E ) W ) M ) |
|
| 2 | uprcl3.c | |- C = ( Base ` E ) |
|
| 3 | df-br | |- ( X ( <. F , G >. ( D UP E ) W ) M <-> <. X , M >. e. ( <. F , G >. ( D UP E ) W ) ) |
|
| 4 | 3 | biimpi | |- ( X ( <. F , G >. ( D UP E ) W ) M -> <. X , M >. e. ( <. F , G >. ( D UP E ) W ) ) |
| 5 | 2 | uprcl | |- ( <. X , M >. e. ( <. F , G >. ( D UP E ) W ) -> ( <. F , G >. e. ( D Func E ) /\ W e. C ) ) |
| 6 | 5 | simprd | |- ( <. X , M >. e. ( <. F , G >. ( D UP E ) W ) -> W e. C ) |
| 7 | 1 4 6 | 3syl | |- ( ph -> W e. C ) |