This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Universal property and fully faithful functor surjective on objects. (Contributed by Zhi Wang, 25-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uptr2a.a | |- A = ( Base ` C ) |
|
| uptr2a.b | |- B = ( Base ` D ) |
||
| uptr2a.y | |- ( ph -> Y = ( ( 1st ` K ) ` X ) ) |
||
| uptr2a.f | |- ( ph -> ( G o.func K ) = F ) |
||
| uptr2a.x | |- ( ph -> X e. A ) |
||
| uptr2a.g | |- ( ph -> G e. ( D Func E ) ) |
||
| uptr2a.k | |- ( ph -> K e. ( ( C Full D ) i^i ( C Faith D ) ) ) |
||
| uptr2a.1 | |- ( ph -> ( 1st ` K ) : A -onto-> B ) |
||
| Assertion | uptr2a | |- ( ph -> ( X ( F ( C UP E ) Z ) M <-> Y ( G ( D UP E ) Z ) M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uptr2a.a | |- A = ( Base ` C ) |
|
| 2 | uptr2a.b | |- B = ( Base ` D ) |
|
| 3 | uptr2a.y | |- ( ph -> Y = ( ( 1st ` K ) ` X ) ) |
|
| 4 | uptr2a.f | |- ( ph -> ( G o.func K ) = F ) |
|
| 5 | uptr2a.x | |- ( ph -> X e. A ) |
|
| 6 | uptr2a.g | |- ( ph -> G e. ( D Func E ) ) |
|
| 7 | uptr2a.k | |- ( ph -> K e. ( ( C Full D ) i^i ( C Faith D ) ) ) |
|
| 8 | uptr2a.1 | |- ( ph -> ( 1st ` K ) : A -onto-> B ) |
|
| 9 | relfull | |- Rel ( C Full D ) |
|
| 10 | relin1 | |- ( Rel ( C Full D ) -> Rel ( ( C Full D ) i^i ( C Faith D ) ) ) |
|
| 11 | 9 10 | ax-mp | |- Rel ( ( C Full D ) i^i ( C Faith D ) ) |
| 12 | 1st2ndbr | |- ( ( Rel ( ( C Full D ) i^i ( C Faith D ) ) /\ K e. ( ( C Full D ) i^i ( C Faith D ) ) ) -> ( 1st ` K ) ( ( C Full D ) i^i ( C Faith D ) ) ( 2nd ` K ) ) |
|
| 13 | 11 7 12 | sylancr | |- ( ph -> ( 1st ` K ) ( ( C Full D ) i^i ( C Faith D ) ) ( 2nd ` K ) ) |
| 14 | inss1 | |- ( ( C Full D ) i^i ( C Faith D ) ) C_ ( C Full D ) |
|
| 15 | fullfunc | |- ( C Full D ) C_ ( C Func D ) |
|
| 16 | 14 15 | sstri | |- ( ( C Full D ) i^i ( C Faith D ) ) C_ ( C Func D ) |
| 17 | 16 7 | sselid | |- ( ph -> K e. ( C Func D ) ) |
| 18 | 17 6 | cofu1st2nd | |- ( ph -> ( G o.func K ) = ( <. ( 1st ` G ) , ( 2nd ` G ) >. o.func <. ( 1st ` K ) , ( 2nd ` K ) >. ) ) |
| 19 | relfunc | |- Rel ( C Func E ) |
|
| 20 | 17 6 | cofucl | |- ( ph -> ( G o.func K ) e. ( C Func E ) ) |
| 21 | 4 20 | eqeltrrd | |- ( ph -> F e. ( C Func E ) ) |
| 22 | 1st2nd | |- ( ( Rel ( C Func E ) /\ F e. ( C Func E ) ) -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
|
| 23 | 19 21 22 | sylancr | |- ( ph -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
| 24 | 4 18 23 | 3eqtr3d | |- ( ph -> ( <. ( 1st ` G ) , ( 2nd ` G ) >. o.func <. ( 1st ` K ) , ( 2nd ` K ) >. ) = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
| 25 | 6 | func1st2nd | |- ( ph -> ( 1st ` G ) ( D Func E ) ( 2nd ` G ) ) |
| 26 | 1 2 3 8 13 24 5 25 | uptr2 | |- ( ph -> ( X ( <. ( 1st ` F ) , ( 2nd ` F ) >. ( C UP E ) Z ) M <-> Y ( <. ( 1st ` G ) , ( 2nd ` G ) >. ( D UP E ) Z ) M ) ) |
| 27 | 21 | up1st2ndb | |- ( ph -> ( X ( F ( C UP E ) Z ) M <-> X ( <. ( 1st ` F ) , ( 2nd ` F ) >. ( C UP E ) Z ) M ) ) |
| 28 | 6 | up1st2ndb | |- ( ph -> ( Y ( G ( D UP E ) Z ) M <-> Y ( <. ( 1st ` G ) , ( 2nd ` G ) >. ( D UP E ) Z ) M ) ) |
| 29 | 26 27 28 | 3bitr4d | |- ( ph -> ( X ( F ( C UP E ) Z ) M <-> Y ( G ( D UP E ) Z ) M ) ) |