This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is one domain element for each value of a one-to-one onto function. (Contributed by NM, 26-May-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1ofveu | |- ( ( F : A -1-1-onto-> B /\ C e. B ) -> E! x e. A ( F ` x ) = C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ocnv | |- ( F : A -1-1-onto-> B -> `' F : B -1-1-onto-> A ) |
|
| 2 | f1of | |- ( `' F : B -1-1-onto-> A -> `' F : B --> A ) |
|
| 3 | 1 2 | syl | |- ( F : A -1-1-onto-> B -> `' F : B --> A ) |
| 4 | feu | |- ( ( `' F : B --> A /\ C e. B ) -> E! x e. A <. C , x >. e. `' F ) |
|
| 5 | 3 4 | sylan | |- ( ( F : A -1-1-onto-> B /\ C e. B ) -> E! x e. A <. C , x >. e. `' F ) |
| 6 | f1ocnvfvb | |- ( ( F : A -1-1-onto-> B /\ x e. A /\ C e. B ) -> ( ( F ` x ) = C <-> ( `' F ` C ) = x ) ) |
|
| 7 | 6 | 3com23 | |- ( ( F : A -1-1-onto-> B /\ C e. B /\ x e. A ) -> ( ( F ` x ) = C <-> ( `' F ` C ) = x ) ) |
| 8 | dff1o4 | |- ( F : A -1-1-onto-> B <-> ( F Fn A /\ `' F Fn B ) ) |
|
| 9 | 8 | simprbi | |- ( F : A -1-1-onto-> B -> `' F Fn B ) |
| 10 | fnopfvb | |- ( ( `' F Fn B /\ C e. B ) -> ( ( `' F ` C ) = x <-> <. C , x >. e. `' F ) ) |
|
| 11 | 10 | 3adant3 | |- ( ( `' F Fn B /\ C e. B /\ x e. A ) -> ( ( `' F ` C ) = x <-> <. C , x >. e. `' F ) ) |
| 12 | 9 11 | syl3an1 | |- ( ( F : A -1-1-onto-> B /\ C e. B /\ x e. A ) -> ( ( `' F ` C ) = x <-> <. C , x >. e. `' F ) ) |
| 13 | 7 12 | bitrd | |- ( ( F : A -1-1-onto-> B /\ C e. B /\ x e. A ) -> ( ( F ` x ) = C <-> <. C , x >. e. `' F ) ) |
| 14 | 13 | 3expa | |- ( ( ( F : A -1-1-onto-> B /\ C e. B ) /\ x e. A ) -> ( ( F ` x ) = C <-> <. C , x >. e. `' F ) ) |
| 15 | 14 | reubidva | |- ( ( F : A -1-1-onto-> B /\ C e. B ) -> ( E! x e. A ( F ` x ) = C <-> E! x e. A <. C , x >. e. `' F ) ) |
| 16 | 5 15 | mpbird | |- ( ( F : A -1-1-onto-> B /\ C e. B ) -> E! x e. A ( F ` x ) = C ) |