This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 4 for upgrimwlk . (Contributed by AV, 28-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgrimwlk.i | |- I = ( iEdg ` G ) |
|
| upgrimwlk.j | |- J = ( iEdg ` H ) |
||
| upgrimwlk.g | |- ( ph -> G e. USPGraph ) |
||
| upgrimwlk.h | |- ( ph -> H e. USPGraph ) |
||
| upgrimwlk.n | |- ( ph -> N e. ( G GraphIso H ) ) |
||
| upgrimwlk.e | |- E = ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) ) |
||
| upgrimwlk.f | |- ( ph -> F e. Word dom I ) |
||
| upgrimwlklem.p | |- ( ph -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
||
| Assertion | upgrimwlklem4 | |- ( ph -> ( N o. P ) : ( 0 ... ( # ` E ) ) --> ( Vtx ` H ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrimwlk.i | |- I = ( iEdg ` G ) |
|
| 2 | upgrimwlk.j | |- J = ( iEdg ` H ) |
|
| 3 | upgrimwlk.g | |- ( ph -> G e. USPGraph ) |
|
| 4 | upgrimwlk.h | |- ( ph -> H e. USPGraph ) |
|
| 5 | upgrimwlk.n | |- ( ph -> N e. ( G GraphIso H ) ) |
|
| 6 | upgrimwlk.e | |- E = ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) ) |
|
| 7 | upgrimwlk.f | |- ( ph -> F e. Word dom I ) |
|
| 8 | upgrimwlklem.p | |- ( ph -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
|
| 9 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 10 | eqid | |- ( Vtx ` H ) = ( Vtx ` H ) |
|
| 11 | 9 10 | grimf1o | |- ( N e. ( G GraphIso H ) -> N : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) |
| 12 | f1of | |- ( N : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) -> N : ( Vtx ` G ) --> ( Vtx ` H ) ) |
|
| 13 | 5 11 12 | 3syl | |- ( ph -> N : ( Vtx ` G ) --> ( Vtx ` H ) ) |
| 14 | 1 2 3 4 5 6 7 | upgrimwlklem1 | |- ( ph -> ( # ` E ) = ( # ` F ) ) |
| 15 | 14 | oveq2d | |- ( ph -> ( 0 ... ( # ` E ) ) = ( 0 ... ( # ` F ) ) ) |
| 16 | 15 | feq2d | |- ( ph -> ( P : ( 0 ... ( # ` E ) ) --> ( Vtx ` G ) <-> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) ) |
| 17 | 8 16 | mpbird | |- ( ph -> P : ( 0 ... ( # ` E ) ) --> ( Vtx ` G ) ) |
| 18 | 13 17 | fcod | |- ( ph -> ( N o. P ) : ( 0 ... ( # ` E ) ) --> ( Vtx ` H ) ) |